Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687103

ABSTRACT

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , Salmonella Infections, Animal , Salmonella Vaccines , Salmonella typhimurium , Vaccines, Attenuated , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Vaccines, Attenuated/immunology , Animals , Salmonella Vaccines/immunology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Polymerase Chain Reaction/veterinary , Computer Simulation
2.
Food Microbiol ; 119: 104431, 2024 May.
Article in English | MEDLINE | ID: mdl-38225041

ABSTRACT

Isolation of Salmonella from enrichment cultures of food or environmental samples is a complicated process. Numerous factors including fitness in various selective enrichment media, relative starting concentrations in pre-enrichment, and competition among multi-serovar populations and associated natural microflora, come together to determine which serovars are identified from a given sample. A recently developed approach for assessing the relative abundance (RA) of multi-serovar Salmonella populations (CRISPR-SeroSeq or Deep Serotyping, DST) is providing new insight into how these factors impact the serovars observed, especially when different selective enrichment methods are used to identify Salmonella from a primary enrichment sample. To illustrate this, we examined Salmonella-positive poultry pre-enrichment samples through the selective enrichment process in Tetrathionate (TT) and Rappaport Vassiliadis (RVS) broths and assessed recovery of serovars with each medium. We observed the RA of serovars detected post selective enrichment varied depending on the medium used, initial concentration, and competitive fitness factors, all which could result in minority serovars in pre-enrichment becoming dominant serovars post selective enrichment. The data presented provide a greater understanding of culture biases and lays the groundwork for investigations into robust enrichment and plating media combinations for detecting Salmonella serovars of greater concern for human health.


Subject(s)
Salmonella enterica , Animals , Humans , Salmonella enterica/genetics , Serogroup , Poultry , Salmonella/genetics , Serotyping/methods , Culture Media
3.
J Food Prot ; 87(3): 100208, 2024 03.
Article in English | MEDLINE | ID: mdl-38142825

ABSTRACT

Nearly 20% of salmonellosis cases are attributed to broilers, with renewed efforts to reduce Salmonella during broiler production and processing. A limitation to Salmonella culture is that often a single colony is picked for characterization, favoring isolation of the most abundant serovar found in a sample, while low abundance serovars can remain undetected. We used a deep serotyping approach, CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), to assess Salmonella serovar complexity during broiler processing and to determine the impact of antimicrobial interventions upon serovar population dynamics. Paired hot rehang and postchill young chicken carcasses were collected from establishments across the United States from August to November 2022. CRISPR-SeroSeq was performed on Salmonella culture-positive hot rehang (n = 153) and postchill (n = 38) samples, including 31 paired hot rehang and postchill samples. Multiple serovars were detected in 48.4% (74/153) and 7.9% (3/38) of hot rehang and postchill samples, respectively. On average, hot rehang carcasses contained 1.6 serovars, compared to 1.1 serovars at postchill (Mann Whitney U, p = 0.00018). Nineteen serovars were identified with serovar Kentucky the most common at hot rehang (72.5%; 111/153) and postchill (73.7%; 28/38). Serovar Infantis prevalence was higher at hot rehang (39.9%; 61/153) than in postchill (7.9%; 3/38). At hot rehang, serovar Enteritidis was outnumbered by other serovars 81.3% (13/16) of the time but was always the single or most abundant serovar detected when it was present at postchill (n = 5). We observed 98.4% (188/191) concordance between traditional isolation with serotyping and CRISPR-SeroSeq. Deep serotyping was able to explain serovar discrepancies between paired hot rehang and postchill samples when only traditional isolation and serotyping methods were used. These data demonstrate that processing interventions are effective in reducing Salmonella serovar complexity.


Subject(s)
Chickens , Poultry , Animals , United States , Serogroup , Serotyping/methods , Salmonella
4.
Front Microbiol ; 14: 1272916, 2023.
Article in English | MEDLINE | ID: mdl-38029194

ABSTRACT

Wild birds pose a difficult food safety risk to manage because they can avoid traditional wildlife mitigation strategies, such as fences. Birds often use agricultural fields and structures as foraging and nesting areas, which can lead to defecation on crops and subsequent transfer of foodborne pathogens. To assess the food safety risk associated with these events, wild bird feces were collected from produce fields across the southeastern United States during the 2021 and 2022 growing seasons. In total 773 fecal samples were collected from 45 farms across Florida, Georgia, South Carolina, and Tennessee, and 2.1% (n = 16) of samples were Salmonella-positive. Importantly, 75% of Salmonella were isolated from moist feces, showing reduced Salmonella viability when feces dry out. 16S microbiome analysis showed that presence of culturable Salmonella in moist feces correlated to a higher proportion of the Enterobacteriaceae family. From the Salmonella-positive samples, 62.5% (10/16) contained multi-serovar Salmonella populations. Overall, 13 serovars were detected, including six most commonly attributed to human illness (Enteriditis, Newport, Typhimurium, Infantis, Saintpaul, and Muenchen). PCR screening identified an additional 59 Salmonella-positive fecal samples, which were distributed across moist (n = 44) and dried feces (n = 15). On-farm point counts and molecular identification from fecal samples identified 57 bird species, including for 10 Salmonella-positive fecal samples. Overall, there was a low prevalence of Salmonella in fecal samples, especially in dried feces, and we found no evidence of Salmonella transmission to proximal foliage or produce. Fecal samples collected in farms close together shared highly related isolates by whole genome sequencing and also had highly similar Salmonella populations with comparable relative frequencies of the same serovars, suggesting the birds acquired Salmonella from a common source.

5.
Microb Genom ; 9(9)2023 09.
Article in English | MEDLINE | ID: mdl-37750759

ABSTRACT

Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.


Subject(s)
Salmonella enterica , Humans , Animals , Cattle , Swine , Serogroup , Salmonella enterica/genetics , Chickens , Kentucky , Multilocus Sequence Typing , Phylogeny , Genomics , Phenotype
6.
Access Microbiol ; 5(8)2023.
Article in English | MEDLINE | ID: mdl-37691844

ABSTRACT

The microbiome profoundly influences many traits in medically relevant vectors such as mosquitoes, and a greater functional understanding of host-microbe interactions may be exploited for novel microbial-based approaches to control mosquito-borne disease. Here, we characterized two novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems in Serratia sp. Ag1, which was isolated from the gut of an Anopheles gambiae mosquito. Two distinct CRISPR/Cas systems were identified in Serratia Ag1, CRISPR1 and CRISPR2. Based on cas gene composition, CRISPR1 is classified as a type I-E CRISPR/Cas system and has a single array, CRISPR1. CRISPR2 is a type I-F system with two arrays, CRISPR2.1 and CRISPR2.2. RT-PCR analyses show that all cas genes from both systems are expressed during logarithmic growth in culture media. The direct repeat sequences of CRISPRs 2.1 and 2.2 are identical and found in the arrays of other Serratia spp., including S. marcescens and S. fonticola , whereas CRISPR1 is not. We searched for potential spacer targets and revealed an interesting difference between the two systems: only 9 % of CRISPR1 (type I-E) targets are in phage sequences and 91 % are in plasmid sequences. Conversely, ~66 % of CRISPR2 (type I-F) targets are found within phage genomes. Our results highlight the presence of CRISPR loci in gut-associated bacteria of mosquitoes and indicate interplay between symbionts and invasive mobile genetic elements over evolutionary time.

7.
Microbiol Spectr ; : e0414722, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36861983

ABSTRACT

We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of C. jejuni from chicken ceca were collected from a commercial slaughter plant and isolates of C. jejuni were also collected from rivers and creeks in the same watershed. Isolates were subjected to whole-genome sequencing and the data were used for core genome multilocus sequence typing (cgMLST). Cluster analysis showed that there were four distinct subpopulations, two from chickens and two from water. Calculation of fixation statistic (Fst) showed that all four subpopulations were significantly distinct. Greater than 90% of the loci were differentiated by subpopulation. Only two genes showed clear differentiation of both chicken subpopulations from both water subpopulations. Sequence fragments of the CJIE4 bacteriophage family were found frequently in the main chicken subpopulation and the water outgroup subpopulation but were sparsely found in the main water population and not at all in the chicken outgroup. CRISPR spacers that targeted the phage sequences were common in the main water subpopulation, only once in the main chicken subpopulation, and not at all in the chicken or water outgroups. Restriction enzyme genes also showed a biased distribution. These data suggest that there is little transfer of C. jejuni genetic material between chickens and nearby river water. Campylobacter differentiation according to these two sources does not show clear evidence of evolutionary selection; the differentiation is probably due to geospatial isolation, genetic drift, and the action of CRISPRs and restriction enzymes. IMPORTANCE Campylobacter jejuni causes gastroenteritis in humans, and chickens and environmental water are leading sources of infection. We tested the hypothesis that Campylobacter isolated from chicken ceca and river water in an overlapping geographic area would share genetic information. Isolates of Campylobacter were collected from water and chicken sources in the same watershed and their genomes were sequenced and analyzed. Four distinct subpopulations were found. There was no evidence of sharing genetic material between the subpopulations. Phage profiles, CRISPR profiles and restriction systems differed by subpopulation.

8.
J Food Prot ; 86(2): 100033, 2023 02.
Article in English | MEDLINE | ID: mdl-36916571

ABSTRACT

Salmonella enterica is a major cause of human foodborne illness and is often attributed to poultry food sources. S. enterica serovar Infantis, specifically those carrying the pESI plasmid, has become a frequently isolated serotype from poultry meat samples at processing and has caused numerous recent human infections. In 2016, the USDA-Food Safety and Inspection Service changed the official sampling method for raw poultry products from BPW to using neutralizing BPW (nBPW) as the rinsing agent in order to prevent residual antimicrobial effects from acidifying and oxidizing processing aids. This change was contemporaneous to the emergence of pESI-positive ser. Infantis as a prevalent serovar in poultry, prompting some to question if nBPW could be selecting for this prevalent serovar. We performed two experiments: a comparison of ser. Infantis growth in BPW versus nBPW, and a simulation of regulatory sampling methods. We found that when inoculated into both broths, ser. Infantis initially grows slightly slower in nBPW than in BPW but little difference was seen in abundance after 6 h of growth. Additionally, the use of nBPW to simulate poultry rinse sample and overnight cold shipping to a regulatory lab did not affect the survival or subsequent growth of ser. Infantis in BPW. We concluded that the change in USDA-FSIS methodology to include nBPW in sampling procedures has likely not affected the emergence of S. ser. Infantis as a prevalent serovar in chicken and turkey meat product samples.


Subject(s)
Salmonella enterica , Animals , Humans , Serogroup , Peptones , Water , Poultry , Chickens
9.
Appl Environ Microbiol ; 89(4): e0203522, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36920215

ABSTRACT

Despite a reduction of Salmonella contamination on final poultry products, the level of human salmonellosis cases attributed to poultry has remained unchanged over the last few years. There needs to be improved effort to target serovars which may survive antimicrobial interventions and cause illness, as well as to focus on lessening the amount of contamination entering the processing plant. Advances in molecular enumeration approaches allow for the rapid detection and quantification of Salmonella in pre- and postharvest samples, which can be combined with deep serotyping to properly assess the risk affiliated with a poultry flock. In this study, we collected a total of 160 boot sock samples from 20 broiler farms across four different integrators with different antibiotic management programs. Overall, Salmonella was found in 85% (68/80) of the houses, with each farm having at least one Salmonella-positive house. The average Salmonella quantity across all four complexes was 3.6 log10 CFU/sample. Eleven different serovars were identified through deep serotyping, including all three key performance indicators (KPIs; serovars Enteritidis, Infantis, and Typhimurium) defined by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS). There were eight multidrug resistant isolates identified in this study, and seven which were serovar Infantis. We generated risk scores for each flock based on the presence or absence of KPIs, the relative abundance of each serovar as calculated with CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), and the quantity of Salmonella organisms detected. The work presented here provides a framework to develop directed processing approaches and highlights the limitations of conventional Salmonella sampling and culturing methods. IMPORTANCE Nearly one in five foodborne Salmonella illnesses are derived from chicken, making it the largest single food category to cause salmonellosis and indicating a need for effective pathogen mitigation. Although industry has successfully reduced Salmonella incidence in poultry products, there has not been a concurrent reduction in human salmonellosis linked to chicken consumption. New efforts are focused on improved control at preharvest, which requires improved Salmonella surveillance. Here, we present a high-resolution surveillance approach that combines quantity and identity of Salmonella in broiler flocks prior to processing which will further support improved Salmonella controls in poultry. We developed a framework for this approach, indicating that it is possible and important to harness deep serotyping and molecular enumeration to inform on-farm management practices and to minimize risk of cross-contamination between flocks at processing. Additionally, this framework could be adapted to Salmonella surveillance in other food animal production systems.


Subject(s)
Salmonella Food Poisoning , Salmonella Infections, Animal , Salmonella Infections , Animals , Humans , Serotyping/methods , Chickens , Salmonella , Salmonella Food Poisoning/epidemiology , Poultry , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/epidemiology
10.
Food Microbiol ; 110: 104149, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36462810

ABSTRACT

Salmonella contamination of poultry remains a food safety challenge for broiler processors. The objectives of this study were to measure the efficacy of antimicrobial interventions in commercial broiler processing plants to reduce Salmonella and to assess changes in the Salmonella serovars before and after the chilling process. Three commercial processing plants were visited during 2020-2021 and 660 carcass rinse samples collected at three locations (before and after the pre-chiller, and after the main chiller) plus 80 drumstick samples across eight independent visits were collected and screened for Salmonella. Overall, Salmonella was detected in carcass rinse samples collected at 66% (145/220) pre pre-chill, 13.2% (29/220) post pre-chill and 2.3% (5/220) post-chill locations. Serovars Typhimurium, Infantis, and Kentucky were most commonly identified. CRISPR-SeroSeq was used to assess serovar populations and approximately 40% of carcasses (41.2% pre pre-chill and 37.0% post pre-chill) contained more than one serovar (range 1-4 serovars per carcass). Two out of five post-chill carcasses also contained multiple serovars. The low Salmonella incidence post intervention limited any conclusions about survival of particular serovars. Our data shows that serovar presence varies between flocks, even within the same broiler complex and CRISPR-typing also reveals evidence of multiple strains of the same serovar within a flock processed on the same day. We also compared Salmonella serovar populations across 128 paired samples (256 total samples), encompassing samples enriched in both RV and TT broths and found high concordance (Bray-Curtis <0.3) in 93% of samples. This study shows that antimicrobial interventions significantly reduce Salmonella on the carcasses during chilling and demonstrates effective use of a novel deep serotyping technology to track Salmonella serovars through processing.


Subject(s)
Chickens , Salmonella , Animals , Serogroup , Salmonella/genetics , Serotyping , Anti-Bacterial Agents
11.
Poult Sci ; 101(7): 101949, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35688029

ABSTRACT

Conventional Salmonella surveillance requires a week for isolation, confirmation, and subsequent serotyping. We previously showed that this could be reduced by 24 h by combining the pre-enrichment and enrichment steps into a single selective pre-enrichment step and was tested on directly after picking. The goal of this study was 2-fold: 1) to evaluate the use of selective pre-enrichment through each step of processing, including postintervention when the Salmonella load is reduced, and 2) to assess any changes in serovar populations in Salmonella positive samples. Duplicate carcass drip samples, each representative of 500 broiler carcasses, were collected by catching processing water drip under moving carcass shackle lines in each of three commercial broiler slaughter plants. Samples were collected post-pick, post-inside-outside bird wash (IOBW), and post-chill; duplicate wing rinses were performed pre- and post-antimicrobial parts dip. Each processing plant was sampled 6 times for a total of 180 samples collected. The number of Salmonella positives identified with selective pre-enrichment conditions (48/180) was similar to traditional selective enrichment culture conditions (52/180), showed good concordance in recovery rate between the 2 culture methods (Fisher's exact test, P = 0.72). We also found that the incidence of Salmonella reduced dramatically after antimicrobial intervention (post-pick 66.7% vs. post chill 8.3%). When serovar populations were evaluated in Salmonella positive samples using CRISPR-SeroSeq, we detected four different Salmonella serovars, Kentucky, Infantis, Schwarzengrund, and Typhimurium, and their incidence rose between post-pick and post-IOBW. The relative abundance of Infantis within individual samples increased between post-pick and post-IOBW while the relative abundance of the other 3 serovars decreased. These results suggest that a selective pre-enrichment step reduces the time required for Salmonella isolation without negatively affecting detection and serovar profiles in culture positive samples were not altered between culture conditions used.


Subject(s)
Anti-Infective Agents , Chickens , Animals , Food Microbiology , Prevalence , Salmonella , Serotyping/veterinary
12.
Appl Environ Microbiol ; 88(8): e0020422, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35384708

ABSTRACT

Poultry remains a considerable source of foodborne salmonellosis despite significant reduction of Salmonella incidence during processing. There are multiple entry points for Salmonella during production that can lead to contamination during slaughter, and it is important to distinguish the serovars present between the different stages to enact appropriate controls. National Salmonella data from the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) monitoring of poultry processing was analyzed from 2016 to 2020. The overall Salmonella incidence at processing in broiler carcasses and intact parts (parts) decreased from 9.00 to 6.57% over this period. The incidence in parts was higher (11.15%) than in carcasses (4.78%). Regional differences include higher proportions of serovars Infantis and Typhimurium in the Atlantic and higher proportion of serovar Schwarzengrund in the Southeast. For Georgia, the largest broiler-producing state, USDA-FSIS data were compared to Salmonella monitoring data from breeder flocks over the same period, revealing serovar Kentucky as the major serovar in breeders (67.91%) during production but not at processing, suggesting that it is more effectively removed during antimicrobial interventions. CRISPR-SeroSeq was performed on breeder samples collected between 2020 and 2021 to explain the incongruence between pre- and postharvest and showed that 32% of samples contain multiple serovars, with up to 11 serovars found in a single flock. High-resolution sequencing identifies serovar patterns at the population level and can provide insight to develop targeted controls. The work presented may apply to other food production systems where Salmonella is a concern, since it overcomes limitations associated with conventional culture. IMPORTANCE Salmonella is a leading cause of bacterial foodborne illness in the United States, with poultry as a significant Salmonella reservoir. We show the relative decrease in Salmonella over a 5-year period from 2016 to 2020 in processed chicken parts and highlight regional differences with respect to the prevalence of clinically important Salmonella serovars. Our results show that the discrepancy between Salmonella serovars found in pre- and postharvest poultry during surveillance are due in part by the limited detection depth offered by traditional culture techniques. Despite the reduction of Salmonella at processing, the number of human salmonellosis cases has remained stable, which may be attributed to differences in virulence among serovars and their associated risk. When monitoring for Salmonella, it is imperative to identify all serovars present to appropriately assess public health risk and to implement the most effective Salmonella controls.


Subject(s)
Poultry Diseases , Salmonella Food Poisoning , Salmonella Infections , Animals , Chickens/microbiology , Humans , Poultry/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Salmonella/genetics , United States/epidemiology
13.
J Appl Microbiol ; 132(6): 4476-4485, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35279932

ABSTRACT

AIMS: In food animals, Salmonella can exist as multiserovar populations, and the goal of this study was to determine whether Salmonella-positive animal feed samples also consist of multiserovar populations. METHODS AND RESULTS: In all, 50 Salmonella-positive samples, collected from 10 countries, were cultured using three different media for Salmonella isolation: universal pre-enrichment broth, Rappaport-Vassiliadis (RV) broth and tetrathionate (TT) broth. The samples included 25 samples from feed ingredients, 13 from complete feed and 12 feed mill dust samples. Samples from pelleted overnight cultures were analysed by CRISPR-SeroSeq to examine serovar populations in individual samples. Serovars Anatum and Mbandaka were the most commonly identified and were found in feed, feed ingredients and feed environments. Serovars commonly associated with human illness were also identified, and included serovars Enteritidis, Typhimurium and Infantis. Overall, we detected 12 different serogroups (37 different serovars), with eight serovars belonging to the O:7 serogroup (C1 ). Over half (56%) of the samples contained two or more serovars, with 11 serovars found in one sample. Feed ingredients exhibited higher serovar diversity, with an average of three serovars. Across paired samples of pre-enriched and enriched populations, the Bray-Curtis dissimilarity metric showed that 83% of serovar populations were a strong match. CONCLUSIONS: The data presented show that serovars belonging to the O:7 serogroup are commonly found in feed, and that feed can contain multiple serovars. The serovar populations across different Salmonella media were largely concordant. SIGNIFICANCE AND IMPACT OF STUDY: The presence of Salmonella in animal feed is considered a transmission route into meat and poultry products and this study demonstrates that animal feed can contain multiple Salmonella serovars.


Subject(s)
Salmonella Infections, Animal , Salmonella , Animal Feed , Animals , Culture Media , Salmonella/genetics , Serogroup
14.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35195512

ABSTRACT

The evolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) within passerines has resulted in pathoadaptation of this serovar to the avian host in Europe. Recently, we identified an S. Typhimurium lineage from passerines in North America. The emergence of passerine-adapted S. Typhimurium in Europe and North America raises questions regarding its evolutionary origin. Here, we demonstrated that the UK and US passerine-adapted S. Typhimurium shared a common ancestor from ca. 1838, and larids played a key role in the clonal expansion by disseminating the common ancestor between North America and Europe. Further, we identified virulence gene signatures common in the passerine- and larid-adapted S. Typhimurium, including conserved pseudogenes in fimbrial gene lpfD and Type 3 Secretion System (T3SS) effector gene steC. However, the UK and US passerine-adapted S. Typhimurium also possessed unique virulence gene signatures (i.e. pseudogenes in fimbrial gene fimC and T3SS effector genes sspH2, gogB, sseJ and sseK2), and the majority of them (38/47) lost a virulence plasmid pSLT that was present in the larid-adapted S. Typhimurium. These results provide evidence that passerine-adapted S. Typhimurium share a common ancestor with those from larids, and the divergence of passerine- and larid-adapted S. Typhimurium might be due to pseudogenization or loss of specific virulence genes.


Subject(s)
Passeriformes , Salmonella Infections, Animal , Animals , Salmonella typhimurium/genetics , Serogroup , United Kingdom
15.
Appl Environ Microbiol ; 88(6): e0197921, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35108089

ABSTRACT

Salmonella enterica serovar Typhimurium is typically considered a host generalist; however, certain isolates are associated with specific hosts and show genetic features of host adaptation. Here, we sequenced 131 S. Typhimurium isolates from wild birds collected in 30 U.S. states during 1978-2019. We found that isolates from broad taxonomic host groups including passerine birds, water birds (Aequornithes), and larids (gulls and terns) represented three distinct lineages and certain S. Typhimurium CRISPR types presented in individual lineages. We also showed that lineages formed by wild bird isolates differed from most isolates originating from domestic animal sources, and that genomes from these lineages substantially improved source attribution of Typhimurium genomes to wild birds by a machine learning classifier. Furthermore, virulence gene signatures that differentiated S. Typhimurium from passerines, water birds, and larids were detected. Passerine isolates tended to lack S. Typhimurium-specific virulence plasmids. Isolates from the passerine, water bird, and larid lineages had close genetic relatedness with human clinical isolates, including those from a 2021 U.S. outbreak linked to passerine birds. These observations indicate that S. Typhimurium from wild birds in the United States are likely host-adapted, and the representative genomic data set examined in this study can improve source prediction and facilitate outbreak investigation. IMPORTANCE Within-host evolution of S. Typhimurium may lead to pathovars adapted to specific hosts. Here, we report the emergence of disparate avian S. Typhimurium lineages with distinct virulence gene signatures. The findings highlight the importance of wild birds as a reservoir for S. Typhimurium and contribute to our understanding of the genetic diversity of S. Typhimurium from wild birds. Our study indicates that S. Typhimurium may have undergone adaptive evolution within wild birds in the United States. The representative S. Typhimurium genomes from wild birds, together with the virulence gene signatures identified in these bird isolates, are valuable for S. Typhimurium source attribution and epidemiological surveillance.


Subject(s)
Bird Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Animals, Wild , Bird Diseases/epidemiology , Salmonella Infections, Animal/epidemiology , Salmonella enterica/genetics , Salmonella typhimurium , Serogroup , United States
16.
J Appl Microbiol ; 132(3): 2410-2420, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34821433

ABSTRACT

AIMS: Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS: Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION: These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY: These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.


Subject(s)
Bacterial Adhesion , Salmonella , Biofilms , Salmonella/genetics , Serogroup , Stainless Steel , Temperature
17.
Food Microbiol ; 99: 103818, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119103

ABSTRACT

Conventional Salmonella detection is time consuming, often employing a 24-h pre-enrichment step in buffered peptone water (BPW), followed by a 24-h selective enrichment in either Rappaport Vassiliadis (RV) or tetrathionate (TT) broths before streaking onto selective indicator agar. To reduce this time, we sought to optimize pre-enrichment for Salmonella recovery by evaluating the addition of selective chemicals to BPW. Duplicate samples each representative of 500 carcasses were collected by catching processing water drip under moving carcass shackle lines immediately after feather removal in each of nine commercial processing plants. Carcass drip samples were cultured under selective pre-enrichment conditions in parallel with BPW pre-enrichment followed by RV and TT selective enrichment. Addition of bile salts (1 g/L) and novobiocin (0.015 g/L) resulted in Salmonella recovery from 89% samples when plated directly after pre-enrichment compared to 67% recovery in non-selective BPW alone. Salmonella serovar identities were determined using CRISPR-SeroSeq. Overall, serovars matched between selective pre-enrichment and traditional enrichment methods. These data suggest that increasing the selectivity of Salmonella pre-enrichment step may lessen the need for a separate selective enrichment step thereby reducing time required for Salmonella isolation by 24 h.


Subject(s)
Bacteriological Techniques/methods , Food Contamination/analysis , Food Microbiology/methods , Poultry/microbiology , Salmonella/growth & development , Animals , Culture Media/chemistry , Culture Media/metabolism , Food Handling , Salmonella/isolation & purification , Salmonella/metabolism
18.
Article in English | MEDLINE | ID: mdl-33782004

ABSTRACT

Salmonella enterica can exist in food animals as multiserovar populations, and different serovars can harbor diverse antimicrobial resistance (AMR) profiles. Conventional Salmonella isolation assesses AMR only in the most abundant members of a multiserovar population, which typically reflects their relative abundance in the initial sample. Therefore, AMR in underlying serovars is an undetected reservoir that can readily be expanded upon antimicrobial use. CRISPR-SeroSeq profiling demonstrated that 60% of cattle fecal samples harbored multiple serovars, including low levels of Salmonella serovar Reading in 11% of samples, which were not found by culture-based Salmonella isolation. An in vitro challenge revealed that Salmonella serovar Reading was tetracycline resistant, while more abundant serovars were susceptible. This study highlights the importance of AMR surveillance in multiserovar populations.


Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Salmonella/genetics , Salmonella enterica/genetics , Serogroup
19.
Microb Genom ; 7(2)2021 02.
Article in English | MEDLINE | ID: mdl-33539276

ABSTRACT

Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112 S. enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella, including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.


Subject(s)
Antigens, Bacterial/genetics , Salmonella enterica/classification , Whole Genome Sequencing/methods , Antigens, Bacterial/immunology , Fimbriae, Bacterial/genetics , Genome, Bacterial , Genomic Islands , High-Throughput Nucleotide Sequencing , Phylogeny , Plasmids/genetics , Prophages/genetics , Salmonella enterica/genetics , Salmonella enterica/immunology , Serogroup
20.
Appl Environ Microbiol ; 87(6)2021 02 26.
Article in English | MEDLINE | ID: mdl-33397693

ABSTRACT

Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over 2 years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to 10 serovars from a single water sample. On average, there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, whereas serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71 and 78% of samples where they were detected, respectively. Whole-genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity have been temporally and spatially investigated, and this study reveals an extraordinary level of inter- and intraserovar diversity.IMPORTANCESalmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and it is the largest river system where Salmonella diversity has been studied. Rainfall and subsequent high river discharge rates were the greatest indicators of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples and so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water and up to 10 serovars in a single sample.


Subject(s)
Rivers/microbiology , Salmonella/isolation & purification , Genomics , Phylogeny , Salmonella/genetics , Seasons , Serogroup , Water Microbiology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...