Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015769

ABSTRACT

A Microgrid (MG), like any other smart and interoperable power system, requires device-to-device (D2D) communication structures in order to function effectively. This communication system, however, is not immune to intentional or unintentional failures. This paper discusses the effects of communication link failures on MG control and management and proposes solutions based on enhancing message content to mitigate their detritus impact. In order to achieve this goal, generation and consumption forecasting using deep learning (DL) methods at the next time steps is used. The architecture of an energy management system (EMS) and an energy storage system (ESS) that are able to operate in coordination is introduced and evaluated by simulation tests, which show promising results and illustrate the efficacy of the proposed methods. It is important to mention that, in this paper, three dissimilar topics namely MG control/management, DL-based forecasting, and D2D communication architectures are employed and this combination is proven to be capable of achieving the aforesaid objective.


Subject(s)
Deep Learning , Communication , Computer Simulation , Forecasting
2.
PLoS One ; 17(6): e0270573, 2022.
Article in English | MEDLINE | ID: mdl-35771848

ABSTRACT

The decline in European eel (Anguilla anguilla) recruitment over the past half-century is partly due to river infrastructure that delays or blocks upstream migration to rearing habitat. Stimuli, such as electricity, can be used to modify the behaviour of downstream moving fish and guide them to preferred routes of passage at river infrastructure; but research on upstream migrating juvenile eel remains limited. The response of upstream migrating juvenile eel exposed to pulsed direct current (PDC) electric fields was investigated using a recirculatory flume. Eel were presented a choice of two routes upstream under either: (1) a treatment condition, in which the selection of one route resulted in exposure to High Electric Field (HEF) strength that was between 1.5-2 times stronger than the Low Electric Field (LEF) strength encountered in the alternative route; or (2) a control in which the electric field was absent in both routes. Under the treatment, five different mean HEF strengths (0.53, 0.77, 1.22, 2.17 and 3.74 Vcm-1) were tested at one of two frequencies (2 and 10 Hz). Route choice, distance downstream of the first set of electrodes at which an initial response was observed and avoidance behaviours (acceleration, retraction, switching and rejection) were compared among treatments. For the 1.22, 2.17 and 3.74 Vcm-1 and under 2 Hz, eel preferred to pass the LEF route. Avoidance was greater in the HEF route and positively related to field strength. The distance of the initial response did not differ between routes, field strengths or frequency. Upstream migrating eel avoided electric fields indicating potential to develop this approach for fish guidance. Further work is needed to test prototypes in field settings, particularly in combination with traditional physical screens to water intakes as part of a process of applying the concept of marginal gains to advance environmental impact mitigation technology.


Subject(s)
Anguilla , Anguilla/physiology , Animals , Ecosystem , Electricity , Rivers , Seafood
3.
Bioelectromagnetics ; 42(4): 296-308, 2021 May.
Article in English | MEDLINE | ID: mdl-33822398

ABSTRACT

Extremely low-frequency electromagnetic fields (ELF EMFs) have been shown to impact the behavior and physiology of insects. Recent studies have highlighted the need for more research to determine more specifically how they affect flying insects. Here, we ask how locust flight is affected by acute exposure to 50 Hz EMFs. We analyzed the flights of individual locusts tethered between a pair of copper wire coils generating EMFs of various frequency using high-speed video recording. The mean wingbeat frequency of tethered locusts was 18.92 ± 0.27 Hz. We found that acute exposure to 50 Hz EMFs significantly increased absolute change in wingbeat frequency in a field strength-dependent manner, with greater field strengths causing greater changes in wingbeat frequency. The effect of EMFs on wingbeat frequency depended on the initial wingbeat frequency of a locust, with locusts flying at a frequency lower than 20 Hz increasing their wingbeat frequency, while locusts flying with a wingbeat frequency higher than 20 Hz decreasing their wingbeat frequency. During the application of 50 Hz EMF, the wingbeat frequency was entrained to a 2:5 ratio (two wingbeat cycles to five EMF cycles) of the applied EMF. We then applied a range of ELF EMFs that were close to normal wingbeat frequency and found that locusts entrained to the exact frequency of the applied EMF. These results show that exposure to ELF EMFs lead to small but significant changes in wingbeat frequency in locusts. We discuss the biological implications of the coordination of insect flight in response to electromagnetic stimuli. © 2021 Bioelectromagnetics Society.


Subject(s)
Electromagnetic Fields , Grasshoppers , Animals , Electromagnetic Fields/adverse effects
4.
PLoS One ; 14(10): e0223614, 2019.
Article in English | MEDLINE | ID: mdl-31600283

ABSTRACT

Honey bees, Apis mellifera, are a globally significant pollinator species and are currently in decline, with losses attributed to an array of interacting environmental stressors. Extremely low frequency electromagnetic fields (ELF EMFs) are a lesser-known abiotic environmental factor that are emitted from a variety of anthropogenic sources, including power lines, and have recently been shown to have a significant impact on the cognitive abilities and behaviour of honey bees. Here we have investigated the effects of field-realistic levels of ELF EMFs on aversive learning and aggression levels, which are critical factors for bees to maintain colony strength. Bees were exposed for 17 h to 100 µT or 1000 µT ELF EMFs, or a sham control. A sting extension response (SER) assay was conducted to determine the effects of ELF EMFs on aversive learning, while an intruder assay was conducted to determine the effects of ELF EMFs on aggression levels. Exposure to both 100 µT and 1000 µT ELF EMF reduced aversive learning performance by over 20%. Exposure to 100 µT ELF EMFs also increased aggression scores by 60%, in response to intruder bees from foreign hives. These results indicate that short-term exposure to ELF EMFs, at levels that could be encountered in bee hives placed under power lines, reduced aversive learning and increased aggression levels. These behavioural changes could have wider ecological implications in terms of the ability of bees to interact with, and respond appropriately to, threats and negative environmental stimuli.


Subject(s)
Aggression/physiology , Bees/physiology , Electromagnetic Fields , Learning , Animals
5.
Sci Rep ; 6: 36413, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808167

ABSTRACT

Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects.


Subject(s)
Behavior, Animal/radiation effects , Electromagnetic Fields , Grasshoppers/metabolism , HSP70 Heat-Shock Proteins/metabolism , Insect Proteins/metabolism , Action Potentials/drug effects , Animals , Grasshoppers/radiation effects , Muscle, Skeletal/physiology , Muscle, Skeletal/radiation effects , Neurons/physiology , Neurons/radiation effects , Temperature , Up-Regulation/drug effects
7.
Proc Biol Sci ; 282(1812): 20151198, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26224706

ABSTRACT

Natural and anthropogenic static electric fields are commonly found in the environment and can have both beneficial and harmful effects on many animals. Here, we asked how the fruitfly responds to these fields and what the consequences of exposure are on the levels of biogenic amines in the brain. When given a choice in a Y-tube bioassay Drosophila avoided electric fields, and the greater the field strength the more likely Drosophila were to avoid it. By comparing wild-type flies, flies with wings surgically removed and vestigial winged flies we found that the presence of intact wings was necessary to produce avoidance behaviour. We also show that Coulomb forces produced by electric fields physically lift excised wings, with the smaller wings of males being raised by lower field strengths than larger female wings. An analysis of neurochemical changes in the brains showed that a suite of changes in biogenic amine levels occurs following chronic exposure. Taken together we conclude that physical movements of the wings are used by Drosophila in generating avoidance behaviour and are accompanied by changes in the levels of amines in the brain, which in turn impact on behaviour.


Subject(s)
Biogenic Amines/metabolism , Drosophila melanogaster/physiology , Electromagnetic Fields/adverse effects , Learning , Animals , Avoidance Learning , Brain/metabolism , Choice Behavior , Female , Male
8.
J Exp Biol ; 214(Pt 12): 2020-6, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21613518

ABSTRACT

Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.


Subject(s)
Periplaneta/physiology , Periplaneta/radiation effects , Animals , Electromagnetic Fields , Locomotion , Static Electricity
9.
J Exp Biol ; 211(Pt 23): 3682-90, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19011207

ABSTRACT

Electric fields are pervasively present in the environment and occur both as a result of man-made activities and through natural occurrence. We have analysed the behaviour of cockroaches to static electric fields and determined the physiological mechanisms that underlie their behavioural responses. The behaviour of animals in response to electric fields was tested using a Y-choice chamber with an electric field generated in one arm of the chamber. Locomotory behaviour and avoidance were affected by the magnitude of the electric fields with up to 85% of individuals avoiding the charged arm when the static electric field at the entrance to the arm was above 8-10 kV m(-1). Electric fields were found to cause a deflection of the antennae but when the antennae were surgically ablated, the ability of cockroaches to avoid electric fields was abolished. Fixation of various joints of the antennae indicated that hair plate sensory receptors at the base of the scape were primarily responsible for the detection of electric fields, and when antennal movements about the head-scape joint were prevented cockroaches failed to avoid electric fields. To overcome the technical problem of not being able to carry out electrophysiological analysis in the presence of electric fields, we developed a procedure using magnetic fields combined with the application of iron particles to the antennae to deflect the antennae and analyse the role of thoracic interneurones in signalling this deflection. The avoidance of electric fields in the context of high voltage power lines is discussed.


Subject(s)
Behavior, Animal , Periplaneta/physiology , Static Electricity , Animals , Locomotion , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...