Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124885, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39096678

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a highly precise and non-invasive analytical method known for its ability to detect vibrational signatures of minute analytes with exceptional sensitivity. However, the efficacy of SERS is subject to substrate properties, and current methodologies face challenges in attaining consistent, replicable, and stable substrates to regulate plasma hot spots across a wide spectral range. This study introduces a straightforward and economical approach that incorporates monodispersed silver nanoparticles onto 2-D porous magnesium oxide nanosheets (Ag@MgO-NSs) through an in-situ process. The resulting nanocomposite, Ag@MgO-NSs, demonstrates substantial SERS enhancement owing to its distinctive plasmonic resonance. The effectiveness of this nanocomposite is exemplified by depositing diverse environmental pollutants as analytes, such as antibiotic ciprofloxacin (CIP), organic dyes like rhodamine 6G (R6G) and methylene blue (MB), and nitrogen-rich pollutant like melamine (MLN), onto the proposed substrate. The proposed nanocomposite features a 2-D porous structure, resulting in a larger surface area and consequently providing numerous adsorption sites for analytes. Moreover, engineering the active sites of the nanocomposite results in a higher number of hotspots, leading to an enhanced performance. The nanocomposite outperforms, exhibiting superior detection capabilities for R6G, MB, and MLN at concentrations of 10-6 M and CIP at concentration of 10-5 M, with impressive uniformity, reproducibility, stability, and analytical enhancement factors (EF) of 6.3 x 104, 2 x 104, 2.73 x 104 and 1.8 x 104 respectively. This approach provides a direct and cost-effective method for the detection of a broad spectrum of environmental pollutants and food additives, presenting potential applications across diverse domains. The detected environmental pollutants and food additives are removed through both catalytic degradation (R6G and MB) and adsorption (CIP and MLN).

3.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826293

ABSTRACT

Gastrointestinal (GI) B cells and plasma cells (PCs), critical to mucosal homeostasis, play an important role in the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs from colon and ileum during both viremic and suppressed HIV-1 infection identified a significant reduction in germinal center (GC) B cells and Follicular Dendritic Cells (FDCs) during HIV-1 viremia. Further, IgA + PCs, the major cellular output of intestinal GCs were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling persisted in antiretroviral therapy (ART) treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations associated with changes in intestinal microbiome composition and systemic inflammation. Herein, we highlight a key immune defect in the GI mucosa due to HIV-1 viremia, with major implications. One Sentence Summary: Major perturbations in intestinal GC dynamics in viremic HIV-1 infection relate to reduced IgA + plasma cells, systemic inflammation and microbiota changes.

4.
Dalton Trans ; 53(20): 8740-8749, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712566

ABSTRACT

This work describes a new well-defined, air-stable, phosphine free palladium(II) [Pd(L)Cl] (1) catalyst. This catalyst was utilized for N-alkylation of amines and indole synthesis where H2O was found to be the by-product. A broad range of aromatic amines were alkylated using this homogeneous catalyst with a catalyst loading of 0.1 mol%. Greener aromatic and aliphatic primary alcohols were utilized and a hydrogen auto-transfer strategy via a metal-ligand cooperative approach was investigated. The precursor of the antihistamine-containing drug molecule tripelennamine was synthesized on a gram scale for large-scale applicability of the current synthetic methodology. A number of control experiments were performed to investigate the possible reaction pathway and the outcomes of these experiments indicated the azo-chromophore as a hydrogen reservoir during the catalytic cycle.

5.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792223

ABSTRACT

We present a Raman spectroscopy study of the vibrational properties of free-base meso-tetra(4-pyridyl) porphyrin polycrystals under various temperature and hydrostatic pressure conditions. The combination of experimental results and Density Functional Theory (DFT) calculations allows us to assign most of the observed Raman bands. The modifications in the Raman spectra when excited with 488 nm and 532 nm laser lights indicate that a resonance effect in the Qy band is taking place. The pressure-dependent results show that the resonance conditions change with increasing pressure, probably due to the shift of the electronic transitions. The temperature-dependent results show that the relative intensities of the Raman modes change at low temperatures, while no frequency shifts are observed. The experimental and theoretical analysis presented here suggest that these molecules are well represented by the C2v point symmetry group.

6.
Sci Immunol ; 9(94): eadg7549, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640252

ABSTRACT

Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4ß7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (ß7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4ß7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of ß7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC.


Subject(s)
Colitis, Ulcerative , Humans , Animals , Mice , Colitis, Ulcerative/drug therapy , Integrins , Intestinal Mucosa , Peyer's Patches , Immunoglobulin G/therapeutic use
7.
Exp Dermatol ; 33(3): e15029, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429868

ABSTRACT

Skin is now emerging as a complex realm of three chief systems viz. immune system, nervous system, and endocrine system. The cells involved in their intricate crosstalk, namely native skin cells, intra-cutaneous immune cells and cutaneous sensory neurons have diverse origin and distinct functions. However, recent studies have explored their role beyond their pre-defined functional boundaries, such that the cells shun their traditional functions and adopt unconventional roles. For example, the native skin cells, apart from providing for basic structural framework of skin, also perform special immune functions and participate in extensive neuro-endocrine circuitry, which were traditionally designated as functions of cutaneous resident immune cells and sensory neurons respectively. At the cellular level, this unique collaboration is brought out by special molecules called neuromediators including neurotransmitters, neuropeptides, neurotrophins, neurohormones and cytokines/chemokines. While this intricate crosstalk is essential for maintaining cutaneous homeostasis, its disruption is seen in various cutaneous diseases. Recent study models have led to a paradigm shift in our understanding of pathophysiology of many such disorders. In this review, we have described in detail the interaction of immune cells with neurons and native skin cells, role of neuromediators, the endocrine aspect in skin and current understanding of cutaneous neuro-immuno-endocrine loop in one of the commonest skin diseases, psoriasis. An accurate knowledge of this unique crosstalk can prove crucial in understanding the pathophysiology of different skin diseases and allow for generation of targeted therapeutic modalities.


Subject(s)
Neuropeptides , Skin Diseases , Humans , Skin , Neurosecretory Systems , Immune System/physiology , Neurotransmitter Agents
8.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963867

ABSTRACT

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Subject(s)
Basidiomycota , Disease Resistance , Chromosome Mapping , Disease Resistance/genetics , Alleles , Haplotypes , Amino Acid Sequence , Basidiomycota/genetics , Plant Diseases/genetics
9.
J Glob Antimicrob Resist ; 35: 262-267, 2023 12.
Article in English | MEDLINE | ID: mdl-37852372

ABSTRACT

OBJECTIVES: Drug resistance in leprosy is an emerging concern, leading to treatment failures, recurrences, and potential spread of resistant Mycobacterium leprae in the community. In this study, we aimed to assess drug resistance prevalence and patterns amongst leprosy patients at a tertiary care referral hospital in India. METHODS: Mutations in drug resistance determining regions for dapsone, rifampicin, and ofloxacin of the M. leprae genome in DNA extracted from skin biopsies of 136 leprosy patients (treatment-naive = 67, with persistent skin lesions = 35, with recurrence = 34) were analysed by polymerase chain reaction followed by Sanger sequencing. Wild-type strain (Thai-53) was used as a reference strain. RESULTS: Resistance mutations were identified in a total of 23 patients, constituting 16.9% of the cohort. Within this subset of 23 cases, resistance to ofloxacin was observed in 17 individuals (12.5%), while resistance to both dapsone and rifampicin was detected in three patients each (2.2% for both). The occurrence of ofloxacin resistance showed minimal disparity between recurrent and treatment-naive cases, at 17.6% and 16.4%, respectively. Dapsone resistance emerged in two treatment-naive cases and one case with persistent skin lesions. Notably, none of the treatment-naive cases or those with recurrence/relapse exhibited rifampicin resistance. Subsequently, no statistically significant correlation was identified between other clinical variables and the presence of antimicrobial resistance. CONCLUSIONS: The occurrence of resistance to the current multidrug therapy regimen (specifically dapsone and rifampicin) and to ofloxacin, a secondary antileprosy medication in M. leprae, represents a concerning scenario. This calls for an expansion towards bactericidal drug options and the establishment of robust surveillance for drug resistance in countries burdened with high leprosy rates. Moreover, the introduction of stringent antimicrobial stewardship initiatives is imperative. As a single centre study, it represents a limited, cross-sectional view of the real situation in the field.


Subject(s)
Leprosy , Mycobacterium leprae , Humans , Mycobacterium leprae/genetics , Rifampin/pharmacology , Rifampin/therapeutic use , Leprostatic Agents/pharmacology , Leprostatic Agents/therapeutic use , Ofloxacin/pharmacology , Drug Therapy, Combination , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Leprosy/drug therapy , Leprosy/epidemiology , Dapsone/pharmacology , Dapsone/therapeutic use , India/epidemiology
11.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711839

ABSTRACT

Targeting the α4ß7-MAdCAM-1 axis with vedolizumab (VDZ) is a front-line therapeutic paradigm in ulcerative colitis (UC). However, mechanism(s) of action (MOA) of VDZ remain relatively undefined. Here, we examined three distinct cohorts of patients with UC (n=83, n=60, and n=21), to determine the effect of VDZ on the mucosal and peripheral immune system. Transcriptomic studies with protein level validation were used to study drug MOA using conventional and transgenic murine models. We found a significant decrease in colonic and ileal naïve B and T cells and circulating gut-homing plasmablasts (ß7+) in VDZ-treated patients, pointing to gut-associated lymphoid tissue (GALT) targeting by VDZ. Murine Peyer's patches (PP) demonstrated a significant loss cellularity associated with reduction in follicular B cells, including a unique population of epithelium-associated B cells, following anti-α4ß7 antibody (mAb) administration. Photoconvertible (KikGR) mice unequivocally demonstrated impaired cellular entry into PPs in anti-α4ß7 mAb treated mice. In VDZ-treated, but not anti-tumor necrosis factor-treated UC patients, lymphoid aggregate size was significantly reduced in treatment responders compared to non-responders, with an independent validation cohort further confirming these data. GALT targeting represents a novel MOA of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC, and for the development of new therapeutic strategies.

12.
Indian J Dermatol ; 67(4): 360-373, 2022.
Article in English | MEDLINE | ID: mdl-36578729

ABSTRACT

Psoriasis is a chronic disabling complex inflammatory disorder prevalent worldwide with environmental and genetic components that involve predominantly skin in addition to nails and joints associated with various systemic comorbidities having periods of exacerbations and remissions. Psoriasis is characterized by hyper-proliferation as well as abnormal differentiation of epidermal keratinocytes and lymphocyte infiltration (mainly T cells) with resultant inflammatory cytokines and chemokines. Immunological and genetic studies over the last decade have identified genetic susceptibility risk alleles, molecular, cellular and immunological mechanisms involved in immunopathogenesis of psoriasis. The current disease model emphasizes the role of aberrant Th1 and Th17 responses regulated by a complex network of different cytokines, including TNF-α, IL-17 and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors and signal transducer and activator of transcriptions. Cytokines targeting biologics (IL-17, IL-23 and TNFα) therapies have revolutionized the management of severe skin disease having beneficial effects on joints and systemic inflammation of psoriasis as well. Further better understanding of immunopathogenesis of psoriasis will pave way for precision medicine based on specific immunopathogenic targets in a given phenotype of disease. Complex interplay of psoriasis with associated comorbidities is also a future area of research for overall better patient management and to improve their quality of life.

14.
Genes Dev ; 36(17-18): 956-969, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36229075

ABSTRACT

Telomeric DNA challenges the replisome and requires TRF1 for efficient duplication. TRF1 recruits the BLM helicase, but BLM loss does not explain the extensive telomere fragility, ATR signaling, and sister telomere associations (STAs) induced by TRF1 deletion. Here, we document that Helix2 of the TRFH domain and Helix1 of the Myb domain of TRF1 are required for efficient telomere replication. Mutation of both helices generated a TRF1 separation-of-function mutant (TRF1-E83K/LW-TI) that induced severe telomere replication defects but no ATR signaling or STAs. We identified the transcription and nucleotide excision repair (NER) factor TFIIH as a critical effector of TRF1. Loss of TFIIH subunits, but no other NER factors, caused the same telomere replication phenotypes as the TRF1-E83K/LW-TI mutant independent of the effects on TRF1 expression. TFIIH subunits coimmunoprecipitated with wild-type TRF1 but not with TRF1-E83K/LW-TI. These results establish that the major mechanism by which TRF1 ensures telomere replication involves a noncanonical function of TFIIH.


Subject(s)
Telomere , Telomeric Repeat Binding Protein 1 , Telomere/genetics , Telomere/metabolism , DNA Replication/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA/metabolism
15.
Plant Physiol Biochem ; 185: 198-220, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35704989

ABSTRACT

Expression of the central circadian oscillator components CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), TIMING OF CAB1 (TOC1), GIGANTEA (GI), and CONSTANS (CO) occurs in Glycine max root cells (syncytia) parasitized by the nematode Heterodera glycines while undergoing resistance, indicating a defense role. GmCCA1-1 relative transcript abundance (RTA) in roots experiencing overexpression (OE) or RNA interference (RNAi) is characterized by rhythmic oscillations, compared to a ribosomal protein gene (GmRPS21) control. A GmCCA1-1 RTA change, advancing by 12 h, exists in H. glycines-infected as compared to uninfected controls in wild-type, H. glycines-resistant, G. max[Peking/PI 548402]. The G. max[Peking/PI 548402] transgenic controls exhibit the RTA change by 4 h post infection (hpi), not consistently occurring in the H. glycines-susceptible G. max[Williams 82/PI 518671] until 56 hpi. GmCCA1-1 expression is observed to be reduced in H. glycines-infected GmCCA1-1-OE roots as compared to non-infected transgenic roots with no significant change observed among RNAi roots. The GmCCA1-1 expression in transgenic GmCCA1-1-OE roots remains higher than control and RNAi roots. Decreased GmCCA1-1 mRNA among infected roots shows the altered expression is targeted by H. glycines. Gene expression of proven defense genes including 9 different mitogen activated protein kinases (GmMAPKs), NON-RACE SPECIFIC DISEASE RESISTANCE 1 (GmNDR1-1), RPM1-INTERACTING PROTEIN 4 (GmRIN4-4), and the secreted xyloglucan endotransglycosylase/hydrolase 43 (GmXTH43) in GmCCA1-1-OE and GmCCA1-1-RNAi roots, compared to controls, reveal a significant role of GmCCA1-1 expression in roots undergoing defense to H. glycines parasitism. The observation that GmCCA1-1 regulates GmXTH43 expression links the central circadian oscillator to the functionality of the secretion system.


Subject(s)
Circadian Clocks , Tylenchoidea , Animals , Cell Wall , Circadian Clocks/genetics , Plant Diseases/genetics , Plant Roots/genetics , Glycine max/metabolism , Tylenchoidea/genetics
17.
Transgenic Res ; 31(4-5): 457-487, 2022 10.
Article in English | MEDLINE | ID: mdl-35763120

ABSTRACT

Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.


Subject(s)
Tylenchoidea , Animals , Gossypium/genetics , Mitogen-Activated Protein Kinase 3 , Pathogen-Associated Molecular Pattern Molecules , Plant Diseases/parasitology , Glycine max/parasitology , Tylenchoidea/genetics
19.
Front Plant Sci ; 13: 842597, 2022.
Article in English | MEDLINE | ID: mdl-35599880

ABSTRACT

Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.

20.
DNA Repair (Amst) ; 113: 103320, 2022 05.
Article in English | MEDLINE | ID: mdl-35316728

ABSTRACT

Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1/metabolism , BRCA1 Protein/metabolism , Recombinational DNA Repair , DNA, Single-Stranded
SELECTION OF CITATIONS
SEARCH DETAIL