Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Thorax ; 77(6): 628-630, 2022 06.
Article in English | MEDLINE | ID: mdl-35165143

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) result in preventable complications demanding specialty care. Underlying hereditary haemorrhagic telangiectasia (HHT) can be identified by genetic testing, if the diagnosis is considered. Retrospectively reviewing 152 unrelated adults with genetically confirmed HHT due to ACVRL1, ENG or SMAD4, we found that only 104/152 (68%) met a clinical diagnosis of HHT with three Curaçao criteria. The genetic diagnostic rate was similar for patients with three (104/137, 76%) or one to two (48/71, 68%; p=0.25) criteria. Of 83 unrelated probands with PAVM(s) and genetically-confirmed HHT, 20/83 (24%) had few, if any, features of HHT. Enhanced clinical suspicion, as well as HHT genetic testing, is recommended if one or more PAVMs are present.


Subject(s)
Arteriovenous Malformations , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Activin Receptors, Type II/genetics , Adult , Arteriovenous Fistula , Arteriovenous Malformations/complications , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Humans , Pulmonary Artery/abnormalities , Pulmonary Veins/abnormalities , Retrospective Studies , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics
3.
Expert Rev Proteomics ; 18(8): 643-659, 2021 08.
Article in English | MEDLINE | ID: mdl-34517741

ABSTRACT

INTRODUCTION: With available genomic data and related information, it is becoming possible to better highlight mutations or genomic alterations associated with a particular disease or disorder. The advent of high-throughput sequencing technologies has greatly advanced diagnostics, prognostics, and drug development. AREAS COVERED: Peptidomics and proteogenomics are the two post-genomic technologies that enable the simultaneous study of peptides and proteins/transcripts/genes. Both technologies add a remarkably large amount of data to the pool of information on various peptides associated with gene mutations or genome remodeling. Literature search was performed in the PubMed database and is up to date. EXPERT OPINION: This article lists various techniques used for peptidomic and proteogenomic analyses. It also explains various bioinformatics workflows developed to understand differentially expressed peptides/proteins and their role in disease pathogenesis. Their role in deciphering disease pathways, cancer research, and biomarker discovery using biofluids is highlighted. Finally, the challenges and future requirements to overcome the current limitations for their effective clinical use are also discussed.


Subject(s)
Proteogenomics , Computational Biology , Genomics , High-Throughput Nucleotide Sequencing , Humans , Peptides
4.
Eur J Med Genet ; 64(10): 104312, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411772

ABSTRACT

Recent guidance suggested modified DNA variant pathogenicity assignments based on genome-wide allele rarity. Different a priori probabilities of pathogenicity operate where patients already have clinical diagnoses, and are found to have a very rare variant in a gene known to cause their disease, compared to predictive testing of a clinically unaffected individual. We tested new recommendations from the ClinGen Sequence Variant Interpretation Working Group for ClinVar-listed, loss-of-function variants meeting the very strong evidence of pathogenicity criterion [PVS1] in genes for 3 specific diseases where causal gene identification can modify clinical care of an individual- Von Willebrand disease, cystic fibrosis and hereditary haemorrhagic telangiectasia. Across these diseases, current rules leave 20/1,278 (1.6%) of loss-of-function variants as variants of uncertain significance (VUS that may not be reported to clinicians), and 207/1,278 (17.2%) as likely pathogenic. Applying the new ClinGen rule enabling PVS1 and the allele rarity criterion PM2 to delineate likely pathogenicity still left 8/1,278 (0.9%) as VUS (reflecting non-PVS1 calls by the submitters), and the majority of null alleles meeting PVS1 as merely likely pathogenic. We favour an approach whereby, for PVS1 variants in patients who personally meet the phenotypic PP4 criterion for a disease where casual variants are commonly family-specific, that PM2 is upgraded to permit a pathogenic call. Of 1,278 ClinVar-listed frameshift, nonsense and canonical splice site variants that met PVS1 in the 3 conditions, 16.0% (204/1,278) would be newly designated as pathogenic, avoiding misinterpretation outside of clinical genetics communities. We suggest further discussion around variant assessment across different clinical applications, potentially guided by PP4 alerts to distinguish personal versus family phenotypic history.


Subject(s)
Gene Frequency , Genetic Testing/standards , Phenotype , Practice Guidelines as Topic , Consensus Development Conferences as Topic , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Genetic Testing/methods , Humans , Mutation , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics
5.
J Thorac Dis ; 12(Suppl 2): S235-S247, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33214927

ABSTRACT

Late-onset Pompe disease (LOPD) is a rare autosomal recessive glycogen storage disease that results in accumulation of glycogen in muscle cells causing muscular weakness. It causes a progressive proximal myopathy, accompanied by respiratory muscle weakness, which can lead to ventilatory failure. In untreated LOPD, the most common cause of death is respiratory failure. Patients suffering from respiratory compromise may present with symptoms of sleep-disordered breathing (SDB) before overt signs of respiratory failure. Diaphragm weakness leads to nocturnal hypoventilation, which can result in sleep disruption. Both subjective and objective sleep quality can be impaired with associated excessive daytime sleepiness (EDS). Health-related quality of life worsens as sleep disturbance increases. The mainstay of treatment for SDB and respiratory failure in LOPD is non-invasive ventilation (NIV), which aims to ensure adequate ventilation, particularly during sleep, and prevent acute hypercapnic failure. These patients are at risk of acute deterioration due to lower respiratory tract infections; effective secretion clearance and vaccination against common pathogens is an important facet of care. Whilst disease-modifying enzyme replacement therapy (ERT) delays progression of locomotor dysfunction and prolongs life, its effect on respiratory function and SDB remains unclear. There are no data demonstrating the impact of ERT on sleep quality or SDB.

6.
Microorganisms ; 8(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172188

ABSTRACT

Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...