Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Photochem Photobiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757336

ABSTRACT

Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.

2.
Int J Biol Macromol ; 268(Pt 1): 131598, 2024 May.
Article in English | MEDLINE | ID: mdl-38621570

ABSTRACT

The present work demonstrates the correlation between structure, properties, and self-sensing protocols of in situ prepared ferric oxide doped grafted copolymer composite, comprised of ferric oxide, chitosan, and polypyrrole (α-Fe2O3-en-CHIT-g-PPy) for residual ibuprofen present in natural and artificial samples. The chemical structure, morphology, functionality, and physio-mechanical properties of the composite were determined by Fourier transform infrared spectrometer (FT-IR), Raman spectra, X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), Two probe method, and standard ASTM techniques to explore sensing nature. The results confirm the evolution of axially aligned structure against 110 planes of α-Fe2O3 and chemically functionalized expanded polymer matrix during in-situ chemical polymerization of pyrrole, with better porosity, interactivity, and improved electrical conductivity i.e. 7.32 × 10-3 S cm-1. Further, a thin film of prepared composite coated on an ITO glass plate was explored for potentiometric sensing of ibuprofen (IBU) present in artificial and natural samples without the use of any additional energy sources. The observed sensing parameters are the sensing ranging 0.5 µM to 100.0 µM, sensitivity 2.5081 mV µM-1 cm-2, response time 50 s, recovery time 10 s, and stability for 60 days. The sensing mechanism of the IBU sensor and effective charge transfer in the electrode was also discussed based on changes in IR spectra of the electrode recorded before and after sensing due to surface oxidation of IBU due to the presence of iron and doping effect of iron oxide in the composite.


Subject(s)
Chitosan , Electrodes , Ferric Compounds , Ibuprofen , Polymers , Potentiometry , Pyrroles , Chitosan/chemistry , Pyrroles/chemistry , Ibuprofen/chemistry , Ibuprofen/analysis , Polymers/chemistry , Ferric Compounds/chemistry , Potentiometry/methods , Spectroscopy, Fourier Transform Infrared
4.
Dalton Trans ; 53(15): 6731-6746, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530659

ABSTRACT

Tuning of vacancies in photocatalytic materials has emerged as a versatile strategy to enhance visible light absorption and photocatalytic activity. In this study, surface oxygen vacancies (defects) were incorporated on antimony tungstate to boost its photocatalytic activity, which was examined by studying the degradation of model pollutants under visible light irradiation. Specifically, a two-to-three-fold increase in photocatalytic activity was observed for oxygen vacancy-rich antimony tungstate in comparison to its pristine counterpart. This improvement in the photocatalytic performance can be attributed to the presence of oxygen vacancies in the material, which leads to an enhanced absorption of light, decrease in the recombination of charge carriers, and increase in the number of active sites. In addition, owing to the nature of the surface charge present, the photocatalysts were found to be selective for the degradation of cationic pollutants in comparison to anionic and neutral pollutants, and can thus be used for the separation of a mixture of pollutants. Furthermore, scavenger studies illustrate that holes play a major role in the photocatalytic degradation of pollutants. Moreover, the excellent photostability of oxygen vacancy-rich antimony tungstate over three consecutive cycles demonstrates its potential as a good photocatalyst for the degradation of pollutants. Overall, this study demonstrates that the engineering of surface vacancies on perovskite oxide materials can render them as efficient single component photocatalysts for environmental remediation applications.

5.
J Chem Inf Model ; 64(4): 1347-1360, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38346863

ABSTRACT

Incomplete structural details of Mycobacterium tuberculosis (Mtb) fatty acid synthase-I (FAS-I) at near-atomic resolution have limited our understanding of the shuttling mechanism of its mobile acyl carrier protein (ACP). Here, we have performed atomistic molecular dynamics simulation of Mtb FAS-I with a homology-modeled structure of ACP stalled at dehydratase (DH) and identified key residues that mediate anchoring of the recognition helix of ACP near DH. The observed distance between catalytic residues of ACP and DH agrees with that reported for fungal FAS-I. Further, the conformation of the peripheral linker is found to be crucial in stabilizing ACP near DH. Correlated interdomain motion is observed between DH, enoyl reductase, and malonyl/palmitoyl transferase, consistent with prior experimental reports of fungal and Mtb FAS-I.


Subject(s)
Acyl Carrier Protein , Mycobacterium tuberculosis , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Molecular Dynamics Simulation , Catalysis
6.
Curr Microbiol ; 81(4): 95, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353761

ABSTRACT

The present work was carried out during the emergence of Delta Variant of Concern (VoC) and aimed to study the change in SARS CoV-2 viral load in Covishield vaccinated asymptomatic/mildly symptomatic health-care workers (HCWs) to find out the optimum isolation period. The SARS CoV-2 viral load was carried out in sequential samples of 55 eligible HCWs which included unvaccinated (UnV; n = 11), single-dose vaccinated (SDV, n = 20) and double-dose vaccinated [DDV, n = 24; short-interval (<6 weeks)] subjects. The mean load of envelope (E) gene on day 5 in SDV [0.42 × 105 copies/reaction] was significantly lower as compared to DDV [6.3 × 105 copies/reaction, P = 0.005] and UnV [6.6 × 105 copies/reaction, P = 0.001] groups. The rate of decline of SARS CoV-2 viral load in the initial 5 days of PCR positivity was significantly higher in SDV as compared to that in DDV (Mean log decline 0.39 vs. 0.19; P < 0.001). This was possibly due to interference of adenoviral immunity of first dose of adenovirus-vectored vaccine in double-dose vaccinated HCWs who had received vaccines within a shorter interval (<6 weeks).


Subject(s)
COVID-19 , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2/genetics , Viral Load , COVID-19/prevention & control
7.
Clin Case Rep ; 12(1): e8381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38161625

ABSTRACT

Schwannomas are rare tumors in the orbit, typically originating from various nerves and presenting diagnostic challenges. We present a unique case of a unilateral orbital schwannoma arising from the supraorbital nerve. A 55-year-old female presented with a painless, slowly growing mass in the right superior orbit, causing proptosis. Visual acuity remained unimpaired, and clinical examination revealed a well-defined mass in the superior orbit. A provisional diagnosis of an orbital dermoid or cyst was made, leading to excision biopsy. The histopathological examination confirmed a diagnosis of benign schwannoma. Schwannomas in the orbit, particularly those arising from the supraorbital nerve, are uncommon and often challenging to diagnose. Early surgical intervention is crucial to prevent complications associated with tumor growth. This case underscores the need to consider schwannomas as a differential diagnosis for slow-growing orbital masses in adults and emphasizes the importance of timely management to prevent vision-threatening complications.

8.
Front Digit Health ; 5: 1268010, 2023.
Article in English | MEDLINE | ID: mdl-38107824

ABSTRACT

Background: The burden of communicable, non-communicable diseases and reproductive maternal, newborn, child & adolescent health in India, reflects the necessity to develop tailored solutions. The plethora of MedTech innovations has provided healthcare facilities with more effective, affordable and accessible healthcare for people across the country. However, in spite of the Make-in-India scheme in the country, the indigenously developed healthcare technology is far from making an impact on the healthcare system. Objective: To present a roadmap for MedTech innovations for their successful deployment into the public healthcare system. Methodology: In addition to the literature review, recommendations were included from several stakeholders such as innovators, manufacturers, policymakers, subject matter experts, funding organizations, State health officials etc. Results and conclusion: The journey of healthcare innovation from need identification to ideation, to prototyping and validation has paved the way towards the de novo design that caters to unmet needs. Innovations at the advanced technology readiness level (TRL 7/8 and above) demand a holistic and multidisciplinary approach which includes clinical validation, regulatory approval and Health technology assessment. The deployment of healthcare technology into the public healthcare system must consider resources (e.g., time, staff, budget, investment policies), ethical concerns (privacy, security, regulations, ownership), governance (policy, accountability, responsibility etc.), and Skills (capabilities, culture, etc.). The technologies are considered for field trials before the uptake in the public health system. Technology can be a key tool in achieving Universal Health Coverage but its use has to be strategic, judicious, and cognizant of issues around privacy and patient rights.

9.
ACS Appl Mater Interfaces ; 15(48): 55765-55778, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37975858

ABSTRACT

Ammonia and nitrates are key raw materials for various chemical and pharmaceutical industries. The conventional methods like Haber-Bosch and Ostwald methods used in the synthesis of ammonia and nitrates, respectively, result in harmful emission of gases. In recent years, the photocatalytic fixation of N2 into NH3 and nitrates has become a hot topic since it is a green and cost-effective approach. However, the simultaneous production of ammonia and nitrates has not been studied much. In this regard, we have synthesized W-doped Bi2MoO6 nanosheets in various molar ratios and demonstrated their potential as efficient photocatalysts for the simultaneous production of NH3 and NO3- ions under visible light irradiation. It was found that one of the catalysts (BMWO0.4) having an optimal molar ratio of doped tungsten showed the best photocatalytic NH3 production (56 µmol h-1) without using any sacrificial agents along with the simultaneous production of NO3- ions at a rate of 7 µmol h-1. The enhanced photocatalytic activity of the synthesized photocatalysts could be ascribed to oxygen vacancy defects caused by Mo substitution by a more electronegative W atom. Furthermore, density functional theory calculations verified the alteration in the band gap after doping of W atoms and also showed a strong chemisorption of N2 over the photocatalyst surface leading to its activation and thereby enhancing the photocatalytic activity. Thus, the present work provides insights into the effect of structural distortions on tailoring the efficiency of materials used in photocatalytic N2 fixation.

10.
Org Lett ; 25(43): 7911-7916, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37882793

ABSTRACT

An unprecedented stereoselective route for procuring tetrahydrophenanthren-2(1H)-ones bearing up to five contiguous stereogenic centers has been accomplished. A bifunctional squaramide enables a domino 1,4-/1,4-addition desymmetrization reaction sequence between the newly developed ß-nitrostyrene-tethered 2,5-cyclohexadienones and trisubstituted enolizable nucleophiles to provide direct access to the polyfunctionalized hydrophenanthren-2(1H)-ones in excellent enantio- (up to >99%) and diastereoselectivity (up to >20:1). By using a psedoenantiomeric squaramide, the enantiomers of hydrophenanthrene derivatives were also accessed with excellent stereocontrol.

11.
Adv Biol Regul ; 90: 100990, 2023 12.
Article in English | MEDLINE | ID: mdl-37801910

ABSTRACT

Gle1 regulates gene expression at multiple steps from transcription to mRNA export to translation under stressed and non-stressed conditions. To better understand Gle1 function in stressed human cells, specific antibodies were generated that recognized the phosphorylation of threonine residue 102 (T102) in Gle1. A series of in vitro kinase assays indicated that T102 phosphorylation serves as a priming event for further phosphorylation in Gle1's N-terminal low complexity cluster. Indirect immunofluorescence microscopy with the anti-Gle1-pT102 antibodies revealed that basally phosphorylated Gle1 was pre-dominantly nuclear with punctate distribution; however, under sodium arsenite-induced stress, more cytoplasmic localization was detected. Immunoprecipitation with the anti-Gle1-pT102 antibody resulted in co-isolation of Gle1-pT102 with the DEAD-box protein DDX1 in a phosphatase sensitive manner. This suggested Gle1 phosphorylation might be linked to its role in regulating DDX1 during transcription termination. Notably, whereas the total Gle1-DDX1 association was decreased when Gle1 nucleocytoplasmic shuttling was disrupted, co-isolation of Gle1-pT102 and DDX1 increased under the same conditions. Taken together, these studies demonstrated that Gle1 phosphorylation impacts its cellular distribution and potentially drives nuclear Gle1 functions in transcription termination. We propose a model wherein phosphorylation of Gle1 either reduces its nucleocytoplasmic shuttling capacity or increases its binding affinity with nuclear interaction partners.


Subject(s)
Nuclear Pore Complex Proteins , Humans , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Phosphorylation , Cell Nucleus/metabolism
13.
Nanoscale ; 15(27): 11667-11680, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37378646

ABSTRACT

Surface contamination of materials by nitrogenous impurities is a major problem that can bias the quantification of ammonia in photocatalytic N2 fixation reactions. In this work, SrTiO3 nanocubes were prepared by using a nitrogenous precursor and engineered with Ti3+ sites and oxygen vacancy defects in a one-step solvothermal approach. It was observed that the synthesized materials were containing surface nitrogenous impurities and therefore a rigorous cleaning procedure was adopted to eliminate them to the best extent. The contribution of unavoidable surface impurities was deduced in the form of adventitious NH3 by employing control experiments and a realistic photocatalytic NH3 generation was achieved. It was found that pristine SrTiO3 showed no photocatalytic activity, whereas one of the defected SrTiO3 materials showed the highest NH3 formation under natural sunlight in pure water, which was ascribed to the tuned defect sites, enhanced surface area and efficient separation of photogenerated charges. Based on the experimental results, a stringent protocol has been suggested for materials synthesis while working with nitrogenous precursors and for subsequent photocatalytic N2 fixation experiments. Thus, the present study provides a simple and affordable procedure for catalyst synthesis for the studied application and expands the scope of perovskite oxide materials to fabricate efficient photocatalysts for sustainable NH3 production.

14.
RSC Adv ; 13(22): 14991-15000, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37200706

ABSTRACT

We demonstrate an enhancement in the upconversion (UC) emission and temperature sensing property of a CaMoO4:Er/Yb phosphor via distortion of the local symmetry environments and reduction in no-radiative channels. Bi3+ ion co-doping creates a local distortion while the average tetragonal structure of CaMoO4 remains intact. This creates asymmetry around the Er3+ ions which improves the UC emission. Furthermore, our calculations on XRD data show a reduction in the dislocation density and the micro-strain in the crystal with the introduction of Bi3+, which also favours the enhancement of UC emission as it reduces the non-radiative channels. Furthermore, the effect of this enhancement on the temperature sensing property of Er3+ ion has also been revealed. Our results show that the UC emission is enhanced about 25 times for Bi3+ co-doped samples which improves the temperature sensitivity significantly. The samples, both with and without Bi3+ co-doping, exhibited relative sensitivities of 0.0068 K-1 at 300 K and 0.0057 K-1 at 298 K which is a significant improvement and indicates the potential of the material for temperature sensing applications. This proof-of-concept provides a deeper understanding of the effect of Bi3+ doping on UC emission and opens new avenues for the development of high-performance temperature sensing materials.

15.
Environ Res ; 231(Pt 2): 116132, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37207734

ABSTRACT

Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 µg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 µg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.


Subject(s)
Anti-Bacterial Agents , Wastewater , Anti-Bacterial Agents/toxicity , Ecosystem , Light , Titanium/toxicity , Titanium/chemistry , Ciprofloxacin/toxicity , Catalysis
16.
Biochem J ; 480(9): 555-571, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36916393

ABSTRACT

Plant growth and development are governed by selective protein synthesis and degradation. Ubiquitination mediated protein degradation is governed by activating enzyme E1 followed by conjugating enzyme E2 and E3 ligase. Plant Armadillo (ARM) repeat/U-box (PUB) protein family is one of the important classes of E3 ligase. We studied the function of AtPUB2 by loss-of-function (knockout and knock down mutants) and gain-of-function (CaMV 35S promoter driven overexpression lines) approach in Arabidopsis. Under normal growth condition, we observed that loss-of-function mutant plants did not show any significant difference in growth when compared with wild-type possibly due to functional redundancy between PUB2 and PUB4. However, AtPUB2-OE lines exhibit early flowering and improved vegetative growth. Also, AtPUB2-OE seedlings showed sensitive phenotype in the presence of exogenous cytokinin. We found that AtPUB2 expression is induced under oxidative stress. Subcellular localization analysis shows that AtPUB2 is predominantly localized in the nucleus. We performed the phenotypic analysis under oxidative stress condition induced by methyl viologen (MV) and observed that overexpression lines display tolerance to oxidative stress in light and dark conditions. Furthermore, we found less amount of ROS accumulation, enhanced proline accumulation and decreased levels of MDA after MV treatment in AtPUB2-OE lines. PUB2-OE lines showed enhanced oxidative stress marker genes expression. By in vitro auto-ubiquitination assay, we also show that it possesses the E3 ligase activity. Overall, our findings suggest the possible role of AtPUB2 in plants ability to tolerate oxidative stress by enhancing the activity of antioxidant enzymes, which in turn improves ROS scavenging activity and homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/metabolism
17.
Int J Pharm ; 635: 122690, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36740077

ABSTRACT

Dexamethasone (Dex) is a popular and highly potent anti-inflammatory drug, frequently used to treat a wide range of inflammatory disorders. However, the existing oral and parenteral delivery modes have several limitations, including systemic adverse effects and reduced patient compliance. This study aimed to develop a biodegradable microneedle (MN)-based transdermal delivery system capable of sustained, safe and effective delivery of Dex. A Quality by Design (QbD) approach was applied to design the Dex-loaded MN arrays. The formulation variables were optimized using a central composite design (CCD) model, generated with the statistical software package Design- Expert®. The optimized MNs were sharp, with heights ranging between 800 and 900 µm, appropriate for transdermal delivery. The MN arrays did not exhibit any cytotoxic effects on the fibroblast and keratinocyte cells. Moreover, the ex vivo studies confirmed the enhanced efficacy of MN-mediated skin permeation of Dex compared to passive permeation of drug solution. Finally, the in vivo anti-inflammatory efficacy was investigated using the carrageenan-induced rat paw edema model. The efficacy of the MN arrays to inhibit paw edema formation was found to be comparable to that of intravenous Dex injection and significantly greater than topical solution. Cytokine analysis also revealed that application of MN arrays downregulated the expressions of pro-inflammatory cytokines and upregulated the expressions of anti-inflammatory cytokines. Overall, the findings suggest that MN array could be a safe, easy, effective and minimally invasive alternative to the existing means of Dex delivery and could potentially be used for the treatment of inflammatory disorders.


Subject(s)
Drug Delivery Systems , Skin , Rats , Animals , Skin/metabolism , Administration, Cutaneous , Cytokines/metabolism , Anti-Inflammatory Agents/metabolism , Edema/chemically induced , Edema/drug therapy , Dexamethasone , Needles
18.
Mol Biol Rep ; 50(4): 3365-3378, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36729207

ABSTRACT

BACKGROUND: The state of Manipur, North East India has distinct topology of hill and valley regions with vast agroclimatic variability, being considered as one of the centers of rice diversity. The indigenous Manipur black rice cultivars exhibit wide range of diversity in morphology, pericarp color, shape and size of grain, aroma, glutinous or non-glutinous features but remain less characterised. Many of these cultivars, such as those named Chakhao, are endowed with multiple health benefits due to high anthocyanins, and hold special importance for the local people. It is important to analyse the genetic diversity and population structure for this germplasm with unique allelic combinations to utilize in rice breeding programme. METHODS AND RESULTS: We characterized total soluble seed protein fractions to not only fingerprint the 45 indigenous black rice cultivars but assess their genetic relatedness. Cluster analyses generated mainly two groups, complemented by PCoA scatter plot ascertaining geographical distinction. The hill black rice were more diverse. The population structure analysis revealed seven subpopulations indicating high genetic variability. The 24 polymorphic bands were scored in the range of 127.8 to 10.3 kDa comprised of four protein fractions. Three polypeptide bands each were ascribed to known fractions of glutelins and prolamins, while one band each could be described for albumin and globulin fractions, besides other diagnostic bands. CONCLUSION: Some diverse cultivars were Amubi, Chedo Anal, Chipi Buh, Athebu, Poireton, BuPu Mui, Kotha Chahao II. These cultivars can be used in future black rice breeding programmes. This can further prevent genetic erosion and protect intellectual property rights.


Subject(s)
Oryza , Humans , Oryza/genetics , Oryza/metabolism , Anthocyanins/metabolism , Phylogeny , Plant Breeding , India , Seeds/genetics , Genetic Variation/genetics
19.
Curr Pharm Biotechnol ; 24(11): 1383-1396, 2023.
Article in English | MEDLINE | ID: mdl-36518042

ABSTRACT

Psoriasis has been considered as a chronic inflammatory skin disease which leads to the dysfunction of immune systems. According to the World Psoriasis Day consortium, psoriasis affects around 125 million individuals globally or about 2% to 3% of the overall population. Most of the conventional drug delivery systems primarily attempt to relieve symptoms of psoriasis and are ineffective in providing targeted action and higher bioavailability because of the drug's short half-life and instability, as well as they lack safety and efficacy. The shortcomings of conventional drug delivery systems give rise to the development of novel drug delivery systems which includes liposomes, transferosomes, ethosomes, niosomes, emulsomes, dendrimers, hydrogel, nanoparticles, etc. These novel formulations may enhance the therapeutic effects by changing physiological and pharmacokinetic parameters. Several research reports suggest that these novel drug delivery systems may enhance therapeutic effects which can be used as a promising approach for the treatment of psoriasis. The liposomes based drug delivery system have been considered as most promising vehicles for enhancing therapeutic potentials of drugs into or through the skin upon topical application. Liposomes have small unilamellar vesicles which may enhance the penetration ability through stratum corneum layer of skin. Therefore, present review article highlights on the different aspects of the liposomes as potential drug delivery system for the treatment of psoriasis.


Subject(s)
Liposomes , Psoriasis , Humans , Drug Delivery Systems , Psoriasis/drug therapy , Skin/metabolism , Skin Absorption , Drug Carriers , Administration, Cutaneous
20.
Int J Pharm ; 630: 122381, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36427694

ABSTRACT

l-Glutathione (GSH) has exceptional antioxidant activities against UVA irradiation-induced oxidative stress and is used widely for combatting skin ageing. However, topical administration of GSH is challenging due to its inability to penetrate the stratum corneum (SC). This study aims to evaluate the solid lipid nanoparticles (SLNs) carrier system for improving the skin penetration and stability of GSH. The GSH-loaded SLNs (GSH-SLNs) were prepared by the double emulsion technique and were optimized by a full factorial design. The optimized GSH-SLNs formulation had a mean particle size of 305 ± 0.6 nm and a zeta potential of + 20.1 ± 9.5 mV, suitable for topical delivery. The ex-vivo penetration study using human skin demonstrated a 3.7-fold improvement of GSH penetration across SC with GSH-SLNs when compared with aqueous GSH. GSH-SLNs prolonged antioxidant activity on UVA irradiated fibroblast cells when compared to GSH solution, preventing UVA-induced cell death and promoting cell growth for times over 48 h. This research has illustrated that as a carrier system, SLNs were able to enhance the physicochemical stability, skin penetration, and drug deposition in the viable epidermis and dermis layers of the skin for GSH, while also maintaining the ability to protect human skin fibroblast cells against oxidative stress caused by UVA irradiation. This delivery system shows future promise as a topical delivery platform for the topical delivery of GSH and other chemically similar bioactive compounds for improving skin health.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Skin Absorption , Liposomes , Particle Size , Glutathione , Drug Carriers
SELECTION OF CITATIONS
SEARCH DETAIL
...