Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Microbiol Res ; 286: 127780, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38970905

ABSTRACT

In recent years, research into the complex interactions and crosstalk between plants and their associated microbiota, collectively known as the plant microbiome has revealed the pivotal role of microbial communities for promoting plant growth and health. Plants have evolved intricate relationships with a diverse array of microorganisms inhabiting their roots, leaves, and other plant tissues. This microbiota mainly includes bacteria, archaea, fungi, protozoans, and viruses, forming a dynamic and interconnected network within and around the plant. Through mutualistic or cooperative interactions, these microbes contribute to various aspects of plant health and development. The direct mechanisms of the plant microbiome include the enhancement of plant growth and development through nutrient acquisition. Microbes have the ability to solubilize essential minerals, fix atmospheric nitrogen, and convert organic matter into accessible forms, thereby augmenting the nutrient pool available to the plant. Additionally, the microbiome helps plants to withstand biotic and abiotic stresses, such as pathogen attacks and adverse environmental conditions, by priming the plant's immune responses, antagonizing phytopathogens, and improving stress tolerance. Furthermore, the plant microbiome plays a vital role in phytohormone regulation, facilitating hormonal balance within the plant. This regulation influences various growth processes, including root development, flowering, and fruiting. Microbial communities can also produce secondary metabolites, which directly or indirectly promote plant growth, development, and health. Understanding the functional potential of the plant microbiome has led to innovative agricultural practices, such as microbiome-based biofertilizers and biopesticides, which harness the power of beneficial microorganisms to enhance crop yields while reducing the dependency on chemical inputs. In the present review, we discuss and highlight research gaps regarding the plant microbiome and how the plant microbiome can be used as a source of single and synthetic bioinoculants for plant growth and health.

2.
Int J Biol Macromol ; 273(Pt 2): 133090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878920

ABSTRACT

Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.


Subject(s)
Cellulose , Food Packaging , Food Packaging/methods , Cellulose/chemistry , Biopolymers/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
3.
Food Sci Nutr ; 12(6): 3920-3934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873482

ABSTRACT

Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant ß-(1 → 4) and ß-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.

4.
Foods ; 13(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731769

ABSTRACT

Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.

5.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Article in English | MEDLINE | ID: mdl-38726405

ABSTRACT

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

6.
Int J Biol Macromol ; 271(Pt 2): 132688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806080

ABSTRACT

Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.


Subject(s)
Plant Gums , Plant Gums/chemistry , Drug Delivery Systems , Humans
7.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Article in English | MEDLINE | ID: mdl-38642692

ABSTRACT

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Subject(s)
Cellulose , Food Packaging , Polyesters , Food Packaging/methods , Cellulose/chemistry , Polyesters/chemistry , Plant Gums/chemistry
8.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Article in English | MEDLINE | ID: mdl-38593896

ABSTRACT

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Subject(s)
Aloe , Galactans , Mannans , Plant Gums , Polysaccharides , Galactans/chemistry , Mannans/chemistry , Mannans/pharmacology , Plant Gums/chemistry , Aloe/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Fat Substitutes/chemistry , Candida albicans/drug effects , Particle Size , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Nanoparticles/chemistry
9.
Food Chem ; 447: 138945, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461725

ABSTRACT

Artificial intelligence has the potential to alter the agricultural and food processing industries, with significant ramifications for sustainability and global food security. The integration of artificial intelligence in agriculture has witnessed a significant uptick in recent years. Therefore, comprehensive understanding of these techniques is needed to broaden its application in agri-food supply chain. In this review, we explored cutting-edge artificial intelligence methodologies with a focus on machine learning, neural networks, and deep learning. The application of artificial intelligence in agri-food industry and their quality assurance throughout the production process is thoroughly discussed with an emphasis on the current scientific knowledge and future perspective. Artificial intelligence has played a significant role in transforming agri-food systems by enhancing efficiency, sustainability, and productivity. Many food industries are implementing the artificial intelligence in modelling, prediction, control tool, sensory evaluation, quality control, and tackling complicated challenges in food processing. Similarly, artificial intelligence applied in agriculture to improve the entire farming process, such as crop yield optimization, use of herbicides, weeds identification, and harvesting of fruits. In summary, the integration of artificial intelligence in agri-food systems offers the potential to address key challenges in agriculture, enhance sustainability, and contribute to global food security.


Subject(s)
Artificial Intelligence , Food-Processing Industry , Food Industry , Food Handling , Neural Networks, Computer , Agriculture
10.
Foods ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540838

ABSTRACT

Elephant apple, a fruit with numerous bioactive compounds, is rich in therapeutic qualities. However, its use in processed products is limited due to insufficient postharvest processing methods. To address this issue, an automatic core cutter (ACC) was developed to handle the hard nature of the fruit while cutting. The physical characteristics of the elephant apple were considered for designing and development of the cutter. The cutter is divided into four main sections, including a frame, collecting tray, movable coring unit, and cutting base with five fruit holders. The parts that directly contact the fruit are made of food-grade stainless steel. The efficiency of the cutter was analyzed based on cutting/coring capacity, machine efficiency, loss percentage, and other factors, and was compared to traditional cutting methods (TCM) and a foot-operated core cutter (FOCC). The ACC had an average cutting/coring capacity of 270-300 kg/h, which was significantly higher than TCM's capacity of 12-15 kg/h and comparable to FOCC's capacity of 115-130 kg/h. The ACC offered a higher sepal yield of 85.68 ± 1.80% compared to TCM's yield of 65.76 ± 1.35%, which was equivalent to the yield obtained by FOCC. Therefore, the ACC outperforms TCM in terms of quality, quantity, and stress associated and is superior to FOCC in terms of higher efficiency of machine and labor.

11.
Foods ; 13(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338632

ABSTRACT

This study investigated the quality characteristics of pasteurized and thermosonicated bor-thekera (Garcinia pedunculata) juices (TSBTJs) during storage at 4 °C for 30 days. Various parameters, including pH, titratable acidity (TA), total soluble content (TSSs), antioxidant activity (AA), total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), cloudiness (CI) and browning indexes (BI), and microbial activity, were analyzed at regular intervals and compared with the quality parameters of fresh bor-thekera juice (FBTJ). A multi-layer artificial neural network (ANN) was employed to model and optimize the ultrasound-assisted extraction of bor-thekera juice. The impacts of storage time, treatment time, and treatment temperature on the quality attributes were also explored. The TSBTJ demonstrated the maximum retention of nutritional attributes compared with the pasteurized bor-thekera juice (PBTJ). Additionally, the TSBTJ exhibited satisfactory results for microbiological activity, while the PBTJ showed the highest level of microbial inactivation. The designed ANN exhibited low mean squared error values and high R2 values for the training, testing, validation, and overall datasets, indicating a strong relationship between the actual and predicted results. The optimal extraction parameters generated by the ANN included a treatment time of 30 min, a frequency of 44 kHz, and a temperature of 40 °C. In conclusion, thermosonicated juices, particularly the TSBTJ, demonstrated enhanced nutritional characteristics, positioning them as valuable reservoirs of bioactive components suitable for incorporation in the food and pharmaceutical industries. The study underscores the efficacy of ANN as a predictive tool for assessing bor-thekera juice extraction efficiency. Moreover, the use of thermosonication emerged as a promising alternative to traditional thermal pasteurization methods for bor-thekera juice preservation, mitigating quality deterioration while augmenting the functional attributes of the juice.

12.
Gels ; 10(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38391425

ABSTRACT

Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.

13.
Int J Biol Macromol ; 259(Pt 1): 129129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181913

ABSTRACT

Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.


Subject(s)
Refuse Disposal , Tissue Engineering , Regenerative Medicine/methods , Food Loss and Waste , Food , Polymers , Biopolymers
14.
Chemosphere ; 349: 140833, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043620

ABSTRACT

New materials' synthesis and utilization have shown many critical challenges in healthcare and other industrial sectors as most of these materials are directly or indirectly developed from fossil fuel resources. Environmental regulations and sustainability concepts have promoted the use of natural compounds with unique structures and properties that can be biodegradable, biocompatible, and eco-friendly. In this context, nanocellulose (NC) utility in different sectors and industries is reported due to their unique properties including biocompatibility and antimicrobial characteristics. The bacterial nanocellulose (BNC)-based materials have been synthesized by bacterial cells and extracted from plant waste materials including pineapple plant waste biomass. These materials have been utilized in the form of nanofibers and nanocrystals. These materials are found to have excellent surface properties, low density, and good transparency, and are rich in hydroxyl groups for their modifications to other useful products. These materials are well utilized in different sectors including biomedical or health care centres, nanocomposite materials, supercapacitors, and polymer matrix production. This review explores different approaches for NC production from pineapple waste residues using biotechnological interventions, approaches for their modification, and wider applications in different sectors. Recent technological developments in NC production by enzymatic treatment are critically discussed. The utilization of pineapple waste-derived NC from a bioeconomic perspective is summarized in the paper. The chemical composition and properties of nanocellulose extracted from pineapple waste may have unique characteristics compared to other sources. Pineapple waste for nanocellulose production aligns with the principles of sustainability, waste reduction, and innovation, making it a promising and novel approach in the field of nanocellulose materials.


Subject(s)
Ananas , Nanoparticles , Cellulose/chemistry , Biomass , Nanoparticles/chemistry , Polymers
15.
Int J Biol Macromol ; 256(Pt 2): 128517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040157

ABSTRACT

Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Cellulose/chemistry , Wastewater , Ecosystem , Coloring Agents , Adsorption , Water Purification/methods
16.
Foods ; 12(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959017

ABSTRACT

Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.

17.
Gels ; 9(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37998989

ABSTRACT

Food gels have been a crucial component in the food industry for many years [...].

18.
Curr Res Food Sci ; 7: 100629, 2023.
Article in English | MEDLINE | ID: mdl-38034946

ABSTRACT

Green techniques to extract natural pigments are gaining prominence among consumers and food industries. This trend is predominantly due to the harmful effects imparted by commonly used synthetic dyes and the unwarranted stress created on our ecosystem. The objectives of this study were to obtain natural pigments (anthocyanins and chlorophyll) from Estonian-gown European green and red gooseberries by ultrasonic-assisted citric acid-mediated extraction method and perform antioxidant profiling (quantification via HPLC analysis). Green gooseberry extracts showed lower content of targeted compounds, with low concentrations of rutin (0.7-1.2 mg/L) and quercetin 3-glucoside (0.9-1.3 mg/L), while in the red gooseberry extracts, the amount was slightly higher (1.4-6.9 and 1.0-1.3 mg/L, respectively) with 0.6-6.8 mg/L cyanidin 3-glucoside and 0.32-0.35 mg/L peonidin 3 glucoside recorded. Further, the yield of anthocyanins ranged between 1.14-1.79 and 1.86-3.63 mg/100 g in green and red gooseberries, respectively. Total phenols ranged between 162-392 and 263-987 mg GAE/100 g in green and red gooseberry extracts, respectively. The DPPH free radicals scavenging activity showed 73-86% and 87-91% inhibition in both green and red gooseberry, respectively. Results showed significant improvements in pigment extraction with higher values obtained for targeted antioxidant compounds using conventional and UAE extraction (aqueous extract), thus confirming that green extractions are a reliable technique to obtain pigments of interest from natural sources. The results support consumers' demand and open up the avenue to explore pigments as natural colourants in food and cosmetics applications.

19.
Front Chem ; 11: 1260165, 2023.
Article in English | MEDLINE | ID: mdl-37780989

ABSTRACT

Milletia pinnata oil and Nardostachys jatamansi are rich sources of bioactive compounds and have been utilized to formulate various herbal formulations, however, due to certain environmental conditions, pure extract form is prone to degradation. Therefore, in this, study, a green hydrodistillation technology was used to extract M. pinnata oil and N. jatamansi root for the further application in development of pectin crosslinked carboxymethyl cellulose/guar-gum nano hydrogel. Both oil and extract revealed the presence of spirojatamol and hexadecanoic acid methyl ester. Varied concentrations (w/w) of cross-linker and gelling agent were used to formulate oil emulsion extract gel (OEEG1, OEG1, OEEG2, OEG2, OEEG3, OEG3, OEEG4, OEG4, OEEG5, OEG5), in which OEEG2 and OEG2 were found to be stable. The hydrogel displayed an average droplet size of 186.7 nm and a zeta potential of -20.5 mV. Endo and exothermic peaks and the key functional groups including hydroxyl, amide II, and amide III groups confirmed thermal stability and molecular structure. The smooth surface confirmed structural uniformity. Bactericidal activity against both Gram-positive (25.41 ± 0.09 mm) and Gram-negative (27.25 ± 0.01 mm) bacteria and anti-inflammatory activity (49.25%-83.47%) makes nanohydrogel a potential option for treating various infections caused by pathogenic microorganisms. In conclusion, the use of green hydrodistillation technology can be used to extract the bioactive compounds that can be used in formulation of biocompatible and hydrophobic nanohydrogels. Their ability to absorb target-specific drugs makes them a potential option for treating various infections caused by pathogenic microorganisms.

20.
Biotechnol Adv ; 69: 108265, 2023 12.
Article in English | MEDLINE | ID: mdl-37783293

ABSTRACT

Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.


Subject(s)
Cellulose , Lignin , Lignin/chemistry , Biomass , Biofuels , Fossil Fuels
SELECTION OF CITATIONS
SEARCH DETAIL
...