Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
J Pharmacol Exp Ther ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777603

ABSTRACT

Metformin's potential in treating ischemic stroke and neurodegenerative conditions is of growing interest. Yet, the absence of established systemic and brain pharmacokinetic (PK) parameters at relevant pre-clinical doses presents a significant knowledge gap. This study highlights these PK parameters and the importance of using pharmacologically relevant pre-clinical doses to study pharmacodynamics (PD) in stroke and related neurodegenerative diseases. An LC-MS/MS method to measure metformin levels in plasma, brain, and cerebrospinal fluid (CSF) was developed and validated. In vitro assays examined brain tissue binding and metabolic stability. Intravenous (IV) bolus administration of metformin to C57BL6 mice covered low to high dose range maintaining pharmacological relevance. Quantification of metformin in the brain was used to assess brain pharmacokinetic parameters, such as unidirectional blood-to-brain constant (Kin) and unbound brain-to-plasma ratio (Kp, uu, brain). Metformin exhibited no binding in the mouse plasma and brain and remained metabolically stable. It rapidly entered the brain, reaching detectable levels in as little as 5 minutes. A Kin value of 1.87 {plus minus} 0.27 µl/g/min was obtained. As the dose increased, Kp, uu, brain showed decreased value, implying saturation, but this did not affect an increase in absolute brain concentrations. Metformin was quantifiable in the CSF at 30 minutes but decreased over time, with concentrations lower than those in the brain across all doses. Our findings emphasize the importance of metformin dose selection based on pharmacokinetic parameters for pre-clinical pharmacological studies. We anticipate further investigations focusing on pharmacokinetics and pharmacodynamics (PKPD) in disease conditions, such as stroke. Significance Statement The study establishes crucial pharmacokinetic parameters of metformin for treating ischemic stroke and neurodegenerative diseases, addressing a significant knowledge gap. It further emphasizes the importance of selecting pharmacologically relevant pre-clinical doses. The findings highlight metformin's rapid brain entry, minimal binding, and metabolic stability. The necessity of considering pharmacokinetic parameters in pre-clinical studies provides a foundation for future investigations into metformin's efficacy for neurodegenerative disease (s).

2.
Pharm Res ; 40(11): 2747-2758, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37833570

ABSTRACT

PURPOSE: There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS: A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS: Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS: This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.


Subject(s)
Peptidomimetics , Stroke , Mice , Animals , Blood-Brain Barrier/metabolism , Peptidomimetics/metabolism , Metalloendopeptidases/metabolism , Stroke/drug therapy , Permeability
3.
Pharmaceutics ; 15(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37242599

ABSTRACT

Our lab previously established that metformin, a first-line type two diabetes treatment, activates the Nrf2 pathway and improves post-stroke recovery. Metformin's brain permeability value and potential interaction with blood-brain barrier (BBB) uptake and efflux transporters are currently unknown. Metformin has been shown to be a substrate of organic cationic transporters (Octs) in the liver and kidneys. Brain endothelial cells at the BBB have been shown to express Octs; thus, we hypothesize that metformin uses Octs for its transport across the BBB. We used a co-culture model of brain endothelial cells and primary astrocytes as an in vitro BBB model to conduct permeability studies during normoxia and hypoxia using oxygen-glucose deprivation (OGD) conditions. Metformin was quantified using a highly sensitive LC-MS/MS method. We further checked Octs protein expression using Western blot analysis. Lastly, we completed a plasma glycoprotein (P-GP) efflux assay. Our results showed that metformin is a highly permeable molecule, uses Oct1 for its transport, and does not interact with P-GP. During OGD, we found alterations in Oct1 expression and increased permeability for metformin. Additionally, we showed that selective transport is a key determinant of metformin's permeability during OGD, thus, providing a novel target for improving ischemic drug delivery.

4.
Fluids Barriers CNS ; 20(1): 17, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899432

ABSTRACT

Electronic nicotine delivery systems (ENDS), also commonly known as electronic cigarettes (e-cigs) are considered in most cases as a safer alternative to tobacco smoking and therefore have become extremely popular among all age groups and sex. It is estimated that up to 15% of pregnant women are now using e-cigs in the US which keeps increasing at an alarming rate. Harmful effects of tobacco smoking during pregnancy are well documented for both pregnancy and postnatal health, however limited preclinical and clinical studies exist to evaluate the long-term effects of prenatal e-cig exposure on postnatal health. Therefore, the aim of our study is to evaluate the effect of maternal e-cig use on postnatal blood-brain barrier (BBB) integrity and behavioral outcomes of mice of varying age and sex. In this study, pregnant CD1 mice (E5) were exposed to e-Cig vapor (2.4% nicotine) until postnatal day (PD) 7. Weight of the offspring was measured at PD0, PD7, PD15, PD30, PD45, PD60 and PD90. The expression of structural elements of the BBB, tight junction proteins (ZO-1, claudin-5, occludin), astrocytes (GFAP), pericytes (PDGFRß) and the basement membrane (laminin α1, laminin α4), neuron specific marker (NeuN), water channel protein (AQP4) and glucose transporter (GLUT1) were analyzed in both male and female offspring using western blot and immunofluorescence. Estrous cycle was recorded by vaginal cytology method. Long-term motor and cognitive functions were evaluated using open field test (OFT), novel object recognition test (NORT) and morris water maze test (MWMT) at adolescence (PD 40-45) and adult (PD 90-95) age. In our study, significantly reduced expression of tight junction proteins and astrocyte marker were observed in male and female offspring until PD 90 (P < 0.05). Additionally, prenatally e-cig exposed adolescent and adult offspring showed impaired locomotor, learning, and memory function compared to control offspring (P < 0.05). Our findings suggest that prenatal e-cig exposure induces long-term neurovascular changes of neonates by disrupting postnatal BBB integrity and worsening behavioral outcomes.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Pregnancy , Female , Animals , Male , Mice , Humans , Blood-Brain Barrier , Nicotine , Tight Junction Proteins
5.
Cell Mol Neurobiol ; 43(5): 2105-2127, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36201091

ABSTRACT

Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.


Subject(s)
Astrocytes , Gliosis , Humans , Brain-Derived Neurotrophic Factor , Dental Pulp , Glial Cell Line-Derived Neurotrophic Factor , Cells, Cultured
7.
Fluids Barriers CNS ; 19(1): 74, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36085043

ABSTRACT

BACKGROUND: The short and long-term health effects of JUUL electronic cigarette (e-Cig) are largely unknown and warrant extensive research. We hypothesized that JUUL exposure could cause cerebrovascular toxicities impacting the progression and outcome of ischemic stroke comparable to tobacco smoke (TS) exposure. METHODS: We exposed male C57 mice to TS/JUUL vapor for 14 days. LCMS/MS was used to measure brain and plasma nicotine and cotinine level. Transient middle cerebral artery occlusion (tMCAO) followed by reperfusion was used to mimic ischemic stroke. Plasma levels of IL-6 and thrombomodulin were assessed by enzyme-linked immunosorbent assay. At the same time, western blotting was used to study blood-brain barrier (BBB) tight junction (TJ) proteins expression and key inflammatory and oxidative stress markers. RESULTS: tMCAO upregulated IL-6 and decreased plasma thrombomodulin levels. Post-ischemic brain injury following tMCAO was significantly worsened by JUUL/TS pre-exposure. TJ proteins expression was also downregulated by JUUL/TS pre-exposure after tMCAO. Like TS, exposure to JUUL downregulated the expression of the antioxidant Nrf2. ICAM-1 was upregulated in mice subjected to tMCAO following pre-exposure to TS or JUUL, with a greater effect of TS than JUUL. CONCLUSIONS: These results suggest that JUUL exposure could negatively impact the cerebrovascular system, although to a lesser extent than TS exposure.


Subject(s)
Electronic Nicotine Delivery Systems , Ischemic Stroke , Animals , Blood-Brain Barrier , Interleukin-6 , Male , Mice , Thrombomodulin , Tight Junction Proteins
8.
Fluids Barriers CNS ; 19(1): 46, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672716

ABSTRACT

BACKGROUND: Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS: Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS: We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS: The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.


Subject(s)
COVID-19 , Vaping , Angiotensin-Converting Enzyme 2 , Animals , Astrocytes , Endothelial Cells , Humans , Mice , SARS-CoV-2 , Smoking/adverse effects , Synaptic Transmission , Tobacco Smoking
9.
Neurotoxicology ; 89: 140-160, 2022 03.
Article in English | MEDLINE | ID: mdl-35150755

ABSTRACT

Accumulating evidence suggests that the detrimental effect of nicotine and tobacco smoke on the central nervous system (CNS) is caused by the neurotoxic role of nicotine on blood-brain barrier (BBB) permeability, nicotinic acetylcholine receptor expression, and the dopaminergic system. The ultimate consequence of these nicotine associated neurotoxicities can lead to cerebrovascular dysfunction, altered behavioral outcomes (hyperactivity and cognitive dysfunction) as well as future drug abuse and addiction. The severity of these detrimental effects can be associated with several biological determinants. Sex and age are two important biological determinants which can affect the pharmacokinetics and pharmacodynamics of several systemically available substances, including nicotine. With regard to sex, the availability of gonadal hormone is impacted by the pregnancy status and menstrual cycle resulting in altered metabolism rate of nicotine. Additionally, the observed lower smoking cessation rate in females compared to males is a consequence of differential effects of sex on pharmacokinetics and pharmacodynamics of nicotine. Similarly, age-dependent alterations in the pharmacokinetics and pharmacodynamics of nicotine have also been observed. One such example is related to severe vulnerability of adolescence towards addiction and long-term behavioral changes which may continue through adulthood. Considering the possible neurotoxic effects of nicotine on the central nervous system and the deterministic role of sex as well as age on these neurotoxic effects of smoking, it has become important to consider sex and age to study nicotine induced neurotoxicity and development of treatment strategies for combating possible harmful effects of nicotine. In the future, understanding the role of sex and age on the neurotoxic actions of nicotine can facilitate the individualization and optimization of treatment(s) to mitigate nicotine induced neurotoxicity as well as smoking cessation therapy. Unfortunately, however, no such comprehensive study is available which has considered both the sex- and age-dependent neurotoxicity of nicotine, as of today. Hence, the overreaching goal of this review article is to analyze and summarize the impact of sex and age on pharmacokinetics and pharmacodynamics of nicotine and possible neurotoxic consequences associated with nicotine in order to emphasize the importance of including these biological factors for such studies.


Subject(s)
Nicotine , Tobacco Smoke Pollution , Biological Factors , Female , Humans , Male , Nicotine/pharmacology , Pregnancy , Smoking/adverse effects , Nicotiana
10.
Life Sci ; 274: 119343, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33716063

ABSTRACT

Aging is a risk factor for major central nervous system (CNS) disorders. More specifically, aging can be inked to neurodegenerative diseases (NDs) because of its deteriorating impact on neurovascular unit (NVU). Metformin, a first line FDA-approved anti-diabetic drug, has gained increasing interest among researchers for its role in improving aging-related neurodegenerative disorders. Additionally, numerous studies have illustrated metformin's role in ischemic stroke, a cerebrovascular disorder in which the NVU becomes dysfunctional which can lead to permanent life-threatening disabilities. Considering metformin's beneficial preclinical actions on various disorders, and the drug's role in alleviating severity of these conditions through involvement in commonly characterized cellular pathways, we discuss the potential of metformin as a suitable drug candidate for repurposing in CNS disorders.


Subject(s)
Aging/drug effects , Brain Ischemia/drug therapy , Drug Repositioning/methods , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Neurodegenerative Diseases/drug therapy , Stroke/drug therapy , Aging/pathology , Animals , Brain Ischemia/pathology , Humans , Neurodegenerative Diseases/pathology , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...