Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 9725-9735, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378454

ABSTRACT

Potentiometric detection in complex biological fluids enables continuous electrolyte monitoring for personal healthcare; however, the commercialization of ion-selective electrode-based devices has been limited by the rapid loss of potential stability caused by electrode surface inactivation and biofouling. Here, we describe a simple multifunctional hybrid patch incorporating an Au nanoparticle/siloxene-based solid contact (SC) supported by a substrate made of laser-inscribed graphene on poly(dimethylsiloxane) for the noninvasive detection of sweat Na+ and K+. These SC nanocomposites prevent the formation of a water layer during ion-to-electron transfer, preserving 3 and 5 µV/h potential drift for the Na+ and K+ ion-selective electrodes, respectively, after 13 h of exposure. The lamellar structure of the siloxene sheets increases the SC area. In addition, the electroplated Au nanoparticles, which have a large surface area and excellent conductivity, further increased the electric double-layer capacitance at the interface between the ion-selective membranes and solid-state contacts, thus facilitating ion-to-electron transduction and ultimately improving the detection stability of Na+ and K+. Furthermore, the integrated temperature and electrocardiogram sensors in the flexible patch assist in monitoring body temperature and electrocardiogram signals, respectively. Featuring both electrochemical ion-selective and physical sensors, this patch offers immense potential for the self-monitoring of health.


Subject(s)
Graphite , Metal Nanoparticles , Graphite/chemistry , Gold/chemistry , Sweat/chemistry , Metal Nanoparticles/chemistry , Electrocardiography
2.
ACS Nano ; 17(9): 8355-8366, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37012260

ABSTRACT

Electronic gloves (e-gloves), with their multifunctional sensing capability, hold a promising application in robotic skin and human-machine interfaces, endowing robots with a human sense of touch. Despite the progress in developing e-gloves by exploiting flexible or stretchable sensors, existing models have inherent rigidity in their sensing area, limiting their stretchability and sensing performance. Herein, we present an all-directional strain-insensitive stretchable e-glove that successfully extends sensing functionality such as pressure, temperature, humidity, and ECG with minimal crosstalk. A scalable and facile method is successfully demonstrated by combining low-cost CO2 laser engraving and electrospinning technology to fabricate multimodal e-glove sensors with a vertical architecture. In comparison to other smart gloves, the proposed e-glove features a ripple-like meandering sensing area and interconnections that are designed to stretch in response to the applied deformation, without affecting the performance of the sensors offering full mechanical stretchability. Furthermore, CNT-coated laser-engraved graphene (CNT/LEG) is used as an active sensing material in which the cross-linking network of the CNT in the LEG minimizes the stress effect and maximizes the sensitivity of the sensors. The fabricated e-glove can detect hot/cold, moisture, and pain simultaneously and precisely, while also allowing for remote transmission of sensory data to the user.


Subject(s)
Robotic Surgical Procedures , Robotics , Humans , Skin , Touch
3.
Biosens Bioelectron ; 219: 114846, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36327564

ABSTRACT

Wearable electrochemical biosensors for perspiration analysis offer a promising non-invasive biomarker monitoring method. Herein, a functionalized hybridized nanoporous carbon (H-NPC)-encapsulated flexible 3D porous graphene-based epidermal patch was firstly fabricated for monitoring sweat glucose, lactate, pH, and temperature using simple, cost-effective, laser-engraved, and spray-coating techniques. The fabricated H-NPC-modified electrode significantly increased electrochemical surface area and electrocatalytic activity. Within the physiological sweat range (0-1.5 mM), the second-generation glucose sensor exhibited an excellent sensitivity of 82.7 µAmM-1cm-2 with 0.025 µM LOD. Moreover, the lactate biosensor exhibited an extraordinary linear range (0-56 mM) response owing to the incorporation of an outer diffusion limiting layer (DLL) that controls the lactate flux reaching the enzyme with comparable sensitivity (204 nAmM-1cm-2) and LOD (4 µM). Finally, we employed an analytical correction approach incorporating pH and temperature adjustments during on-body tests. In addition to connecting various carbon-based materials to limitless metal-organic frameworks as a transduction material, our research also paves the way for enabling these sensors to operate on pH and T correction independently while delivering accurate results.

4.
ACS Appl Mater Interfaces ; 15(1): 1475-1485, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571793

ABSTRACT

The development of highly sensitive, reliable, and cost-effective strain sensors is a big challenge for wearable smart electronics and healthcare applications, such as soft robotics, point-of-care systems, and electronic skins. In this study, we newly fabricated a highly sensitive and reliable piezoresistive strain sensor based on polyhedral cobalt nanoporous carbon (Co-NPC)-incorporated laser-induced graphene (LIG) for wearable smart healthcare applications. The synergistic integration of Co-NPC and LIG enables the performance improvement of the strain sensor by providing an additional conductive pathway and robust mechanical properties with a high surface area of Co-NPC nanoparticles. The proposed porous graphene nanosheets exploited with Co-NPC nanoparticles demonstrated an outstanding sensitivity of 1,177 up to a strain of 18%, which increased to 39,548 beyond 18%. Additionally, the fabricated sensor exhibited an ultralow limit of detection (0.02%) and excellent stability over 20,000 cycles even under high strain conditions (10%). Finally, we successfully demonstrated and evaluated the sensor performance for practical use in healthcare wearables by monitoring wrist pulse, neck pulse, and joint flexion movement. Owing to the outstanding performance of the sensor, the fabricated sensor has great potential in electronic skins, human-machine interactions, and soft robotics applications.


Subject(s)
Graphite , Nanopores , Wearable Electronic Devices , Humans , Carbon , Delivery of Health Care
5.
Anal Chim Acta ; 1209: 339872, 2022 May 29.
Article in English | MEDLINE | ID: mdl-35569853

ABSTRACT

Here, nanocomposite-decorated laser-induced graphene-based flexible hybrid sensor is newly developed for simultaneous detection of heavy metals, pesticides, and pH in freshwater. A series of deposition methods such as drop-casting, electroplating, and heating are adopted to modify and functionalize laser-induced graphene for engineering the high-performance detection at the individual sensor. A micro-dendritic structured bismuth@tin alloy inlaid on laser-induced graphene is prepared via a simple ex-situ electrodeposition method and thermal treatment for detecting heavy metals. The electrochemical performance is evaluated through the simultaneous determination of lead and cadmium ions at the optimized deposition potential of -1.2 V for 170 s, and a wide detection concentration range of 2-250 ppb and low detection limits (1.6 ppb and 0.9 ppb, respectively) are achieved. The pesticide sensor co-modified by zirconia nanoparticles and multilayered Ti3C2Tx-MXene is successfully implemented with a good linear performance for parathion after an optimal accumulation time of 120s. It realizes a low detection concentration range (0.1-5 ppb) with a detection limit of 0.06 ppb. Furthermore, a polyaniline/antimony/laser-induced graphene-based pH sensor is also integrated, showing an excellent sensitivity of -72.08 mV pH-1 in the pH range (2-9). They are also measured and characterized in different real water samples, exhibiting an acceptable detection performance, which provides promising applicability in the on-site monitoring of pollutants in the water environment.


Subject(s)
Graphite , Nanocomposites , Electrochemical Techniques/methods , Graphite/chemistry , Lasers , Nanocomposites/chemistry , Water
6.
Small ; 18(25): e2201247, 2022 06.
Article in English | MEDLINE | ID: mdl-35595710

ABSTRACT

Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.


Subject(s)
Graphite , Nanotubes, Carbon , Copper/chemistry , Graphite/chemistry , Humans , Ions , Lasers , Nanotubes, Carbon/chemistry
7.
ACS Nano ; 15(3): 4380-4393, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33444498

ABSTRACT

Recently, flexible capacitive pressure sensors have received significant attention in the field of wearable electronics. The high sensitivity over a wide linear range combined with long-term durability is a critical requirement for the fabrication of reliable pressure sensors for versatile applications. Herein, we propose a special approach to enhance the sensitivity and linearity range of a capacitive pressure sensor by fabricating a hybrid ionic nanofibrous membrane as a sensing layer composed of Ti3C2Tx MXene and an ionic salt of lithium sulfonamides in a poly(vinyl alcohol) elastomer matrix. The reversible ion pumping triggered by a hydrogen bond in the hybrid sensing layer leads to high sensitivities of 5.5 and 1.5 kPa-1 in the wide linear ranges of 0-30 and 30-250 kPa, respectively, and a fast response time of 70.4 ms. In addition, the fabricated sensor exhibits a minimum detection limit of 2 Pa and high durability over 20 000 continuous cycles even under a high pressure of 45 kPa. These results indicate that the proposed sensor can be potentially used in mobile medical monitoring devices and next-generation artificial e-skin.


Subject(s)
Nanofibers , Wearable Electronic Devices , Hydrogen , Hydrogen Bonding , Pressure
8.
Biosens Bioelectron ; 175: 112844, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33248878

ABSTRACT

In this study, an ultra-high sensitive, flexible, wireless, battery-free, and fully integrated (no external analysis equipment) electrochemical sensing patch system, including a microfluidic-sweat collecting unit, was newly developed for the on-site monitoring of the [K+] concentration in human sweat. Multiwalled carbon nanotube (MWCNT) and MXene-Ti3C2TX based hybrid multi-dimensional networks were applied to obtain a high surface activation area and faster charge transfer rate, strongly adsorbing the valinomycin membrane to protect the ionophore for effective transshipment and immobilization of the [K+]. Furthermore, the controllable porosity of carbon-based materials can accelerate the kinetic process of ion diffusion. This hybrid nanonetwork structure effectively enhanced electrochemical stability and sensitivity, addressing the noise and signal drifting problems experienced with low concentration detection. The fabricated sensor exhibited a high ion concentration sensitivity of 63 mV/dec with excellent selectivity, amplified to 173 mV/dec with the integrated amplification system. The Near Field Communication (NFC) is used to transmit measurements to a smartphone wirelessly. A microfluidic channel was integrated with the electrochemical sensor patch to efficiently collect sweat on the human skin surface and mitigate the sensor surface contamination problem. Furthermore, the developed sensing patch can also be applied to other biomarkers on-site detection after modifying the working electrode with the corresponding selective membranes.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Biomarkers , Humans , Microfluidics , Sweat
9.
ACS Appl Mater Interfaces ; 12(43): 48928-48937, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33074662

ABSTRACT

A flexible electrochemical heavy metal sensor based on a gold (Au) electrode modified with layer-by-layer (LBL) assembly of titanium carbide (Ti3C2Tx) and multiwalled carbon nanotubes (MWNTs) nanocomposites was successfully fabricated for the detection of copper (Cu) and zinc (Zn) ions. An LBL drop-coating process was adopted to modify the surface of Au electrodes with Ti3C2Tx/MWNTs treated via ultrasonication to fabricate this novel nanocomposite electrode. In addition, an in situ simultaneous deposition of "green metal" antimony (Sb) and target analytes was performed to improve the detection performance further. The electrochemical measurement was realized using square wave anodic stripping voltammetry (SWASV). Moreover, the fabricated sensor exhibited excellent detection performance under the optimal experimental conditions. The detection limits for Cu and Zn are as low as 0.1 and 1.5 ppb, respectively. Furthermore, Cu and Zn ions were successfully detected in biofluids, that is, urine and sweat, in a wide range of concentration (urine Cu: 10-500 ppb; urine Zn: 200-600 ppb; sweat Cu: 300-1500 ppb; and sweat Zn: 500-1500 ppb). The fabricated flexible sensor also possesses other advantages of ultra-repeatability and excellent stability. Thus, these advantages provide a great possibility for the noninvasive smart monitoring of heavy metals in the future.


Subject(s)
Copper/urine , Electrochemical Techniques , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Titanium/chemistry , Zinc/urine , Biosensing Techniques , Ions/urine , Particle Size , Surface Properties , Sweat/chemistry
10.
Small ; : e2002517, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090659

ABSTRACT

Controlled deposition of 2D multilayered nanomaterials onto different electrodes to design a highly sensitive biosensing platform utilizing their active inherent electrochemistry is extremely challenging. Herein, a green, facile, and cost-effective one-pot deposition mechanism of 2D MXene-Ti3C2Tx nanosheets (MXNSs) onto conductive electrodes within few minutes via electroplating (termed electroMXenition) is reported for the first time. The redox reaction in the colloidal MXNS solution under the effect of a constant applied potential generates an electric field, which drives the nanoparticles toward a specific electrode interface such that they are cathodically electroplated. A task-specific ionic liquid, that is, 4-amino-1-(4-formyl-benzyl) pyridinium bromide (AFBPB), is exploited as a multiplex host arena for the substantial immobilization of MXNSs and covalent binding of antibodies. A miniaturized, single-masked gold dual interdigitated microelectrode (DIDµE) is microfabricated and presented by investigating the benefit of AFBPB coated on MXNSs. The resulting MXNSs-AFBPB-film-modified DIDµE biosensor exhibited a 7× higher redox current than bare electrodes owing to the uniform deposition. Using Apo-A1 and NMP 22 as model bladder cancer analytes, this newly developed dual immunosensor demonstrated precise and large linear ranges over five orders of significance with limit of detection values as low as 0.3 and 0.7 pg mL-1, respectively.

11.
Biosens Bioelectron ; 169: 112637, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33007617

ABSTRACT

Three-dimensional (3D) porous laser-guided graphene (LGG) electrodes on elastomeric substrates are of great significance for developing flexible functional electronics. However, the high sheet resistance and poor mechanical properties of LGG sheets obstruct their full exploitation as electrode materials. Herein, we applied 2D MXene nanosheets to functionalize 3D LGG sheets via a C-O-Ti covalent crosslink to obtain an LGG-MXene hybrid scaffold exhibited high conductivity and improved electrochemistry with fast heterogeneous electron transfer (HET) rate due to the synergistic effect between LGG and MXene. Then we transferred the obtained hybrid scaffold onto PDMS to engineer a smart, flexible, and stretchable multifunctional sensors-integrated wound bandage capable of assessing uric acid (UA), pH, and temperature at the wound site. The integrated UA sensor exhibited a rapid response toward UA in an extended wide range of 50-1200 µM with a high sensitivity of 422.5 µA mM-1 cm-2 and an ultralow detection limit of 50 µM. Additionally, the pH sensor demonstrated a linear Nernstian response (R2 = 0.998) with a high sensitivity of -57.03 mV pH-1 in the wound relevant pH range of 4-9. The temperature sensor exhibited a fast and stable linear resistive response to the temperature variations in the physiological range of 25-50 °C with an excellent sensitivity and correlation coefficient of 0.09% °C-1 and 0.999, respectively. We anticipate that this stretchable and flexible smart bandage could revolutionize wound care management and have profound impacts on the therapeutic outcomes.


Subject(s)
Biosensing Techniques , Graphite , Bandages , Electrodes , Porosity
12.
ACS Appl Mater Interfaces ; 12(19): 22212-22224, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32302099

ABSTRACT

In recent years, highly sensitive pressure sensors that are flexible, biocompatible, and stretchable have attracted significant research attention in the fields of wearable electronics and smart skin. However, there has been a considerable challenge to simultaneously achieve highly sensitive, low-cost sensors coupled with optimum mechanical stability and an ultralow detection limit for subtle physiological signal monitoring devices. Targeting aforementioned issues, herein, we report the facile fabrication of a highly sensitive and reliable capacitive pressure sensor for ultralow-pressure measurement by sandwiching MXene (Ti3C2Tx)/poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) composite nanofibrous scaffolds as a dielectric layer between biocompatible poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate /polydimethylsiloxane electrodes. The fabricated sensor exhibits a high sensitivity of 0.51 kPa-1 and a minimum detection limit of 1.5 Pa. In addition, it also enables linear sensing over a broad pressure range (0-400 kPa) and high reliability over 10,000 cycles even at extremely high pressure (>167 kPa). The sensitivity of the nanofiber-based sensor is enhanced by MXene loading, thereby increasing the dielectric constant up to 40 and reducing the compression modulus to 58% compared with pristine PVDF-TrFE nanofiber scaffolds. The proposed sensor can be used to determine the health condition of patients by monitoring physiological signals (pulse rate, respiration, muscle movements, and eye twitching) and also represents a good candidate for a next generation human-machine interfacing device.


Subject(s)
Monitoring, Physiologic/instrumentation , Nanocomposites/chemistry , Nanofibers/chemistry , Wearable Electronic Devices , Adult , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Dimethylpolysiloxanes/chemistry , Electric Capacitance , Electrodes , Humans , Limit of Detection , Mechanical Phenomena , Polymers/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Pressure , Titanium/chemistry
13.
Cureus ; 11(4): e4578, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31281761

ABSTRACT

Percutaneous endoscopic gastrostomy (PEG) tube often remains to be used as a primary modality for feeding in patients with advanced dementia, perhaps due to misconceptions regarding the outcomes. Physicians' perceptions regarding the PEG tubes could be a significant contributing factor globally. A multidisciplinary approach involving the ethics committee can help address the issue. Our survey is focused on gauging physicians' perceptions regarding PEG tube utilization and its global impact on outcomes in dementia.

14.
ACS Appl Mater Interfaces ; 11(25): 22531-22542, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31192579

ABSTRACT

Advancement of sensing systems, soft robotics, and point-of-care testing requires the development of highly efficient, scalable, and cost-effective physical sensors with competitive and attractive features such as high sensitivity, reliability, and preferably reversible sensing behaviors. This study reports a highly sensitive and reliable piezoresistive strain sensor fabricated by one-step carbonization of the MoS2-coated polyimide film to obtain MoS2-decorated laser-induced graphene. The resulting three-dimensional porous graphene nanoflakes decorated with MoS2 exhibit stable electrical properties yielding a reliable output for longer strain/release cycles. The sensor demonstrates high sensitivity (i.e., gauge factor, GF ≈1242), is hysteresis-free (∼2.75%), and has a wide working range (up to 37.5%), ultralow detection limit (0.025%), fast relaxation time (∼0.17 s), and a highly stable and reproducible response over multiple test cycles (>12 000) with excellent switching response. Owing to the outstanding performances of the sensor, it is possible to successfully detect various subtle movements ranging from phonation, eye-blinking, and wrist pulse to large human-motion-induced deformations.

15.
Emotion ; 17(2): 348-358, 2017 03.
Article in English | MEDLINE | ID: mdl-27762568

ABSTRACT

Emotional intelligence (EI) has captivated researchers and the public alike, but it has been challenging to establish its components as objective abilities. Self-report scales lack divergent validity from personality traits, and few ability tests have objectively correct answers. We adapt the Stroop task to introduce a new facet of EI called emotional attention regulation (EAR), which involves focusing emotion-related attention for the sake of information processing rather than for the sake of regulating one's own internal state. EAR includes 2 distinct components. First, tuning in to nonverbal cues involves identifying nonverbal cues while ignoring alternate content, that is, emotion recognition under conditions of distraction by competing stimuli. Second, tuning out of nonverbal cues involves ignoring nonverbal cues while identifying alternate content, that is, the ability to interrupt emotion recognition when needed to focus attention elsewhere. An auditory test of valence included positive and negative words spoken in positive and negative vocal tones. A visual test of approach-avoidance included green- and red-colored facial expressions depicting happiness and anger. The error rates for incongruent trials met the key criteria for establishing the validity of an EI test, in that the measure demonstrated test-retest reliability, convergent validity with other EI measures, divergent validity from factors such as general processing speed and mostly personality, and predictive validity in this case for well-being. By demonstrating that facets of EI can be validly theorized and empirically assessed, results also speak to the validity of EI more generally. (PsycINFO Database Record


Subject(s)
Attention , Emotional Intelligence , Emotions/physiology , Facial Expression , Individuality , Cues , Female , Humans , Male , Personality , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL