Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 215: 109022, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39137680

ABSTRACT

Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function. Interestingly, TIPs were found to be absent in lower forms such as algae and fungi and they evolved later in primitive plants like bryophytes. Bryophytes possess a distant class of TIPs, denoted as TIP6, which is not found in higher plants. The aromatic/arginine (ar/R) selectivity filter found in TIP6 of certain liverworts share similarity with hybrid intrinsic protein (HIP), suggesting an evolutionary kinship. As plants evolved to more advanced forms, TIPs diversified into five different sub-groups (TIP1 to TIP5). Notably, TIP5 is a sub-group unique to angiosperms. The evolutionary history of the TIP subfamily reveals an interesting observation that the TIP3 subgroup has evolved within seed-bearing Spermatophyta. Further, TIPs exhibit tissue-specific expression that is conserved within various plant species. Specifically, the TIP3s were found to be exclusively expressed in seeds. Quantitative PCR analysis of TIP3s showed gradually increasing expression in soybean seed developmental stages. The expression of TIP3s in different plant species was also found to be gradually increasing during seed maturation. The results presented here address the knowledge gap concerning the evolutionary background of TIPs, specifically TIP3 in plants, and provide valuable insights for a deeper comprehension of the functions of TIPs in plants.

2.
Sci Rep ; 14(1): 16458, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013915

ABSTRACT

Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.


Subject(s)
Disease Resistance , Gene Regulatory Networks , Oryza , Plant Diseases , Quantitative Trait Loci , Oryza/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosomes, Plant/genetics , Chromosome Mapping , Genes, Plant
3.
J Hazard Mater ; 474: 134671, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38833953

ABSTRACT

Cadmium (Cd), one of the most phytotoxic heavy metals, is a major contributor to yield losses in several crops. Silicon (Si) is recognized for its vital role in mitigating Cd toxicity, however, the specific mechanisms governing this mitigation process are still not fully understood. In the present study, the effect of Si supplementation on mungbean (Vigna radiata (L.) Wilczek) plants grown under Cd stress was investigated to unveil the intricate pathways defining Si derived stress tolerance. Non-invasive leaf imaging technique revealed improved growth, biomass, and photosynthetic efficiency in Si supplemented mungbean plants under Cd stress. Further, physiological and biochemical analysis revealed Si mediated increase in activity of glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) enzymes involved in reactive oxygen species (ROS) metabolism leading to mitigation of cellular damage and oxidative stress. Untargeted metabolomic analysis using liquid chromatography coupled with mass spectrometry (LC-MS/MS) provided insights into Si mediated changes in metabolites and their respective pathways under Cd stress. Alteration in five different metabolic pathways with major changes in flavanols and flavonoids biosynthesis pathway which is essential for controlling plants antioxidant defense system and oxidative stress management were observed. The information reported here about the effects of Si on photosynthetic efficiency, antioxidant responses, and metabolic changes will be helpful in understanding the Si-mediated resistance to Cd stress in plants.


Subject(s)
Antioxidants , Cadmium , Metabolomics , Oxidative Stress , Silicon , Vigna , Cadmium/toxicity , Silicon/pharmacology , Silicon/metabolism , Silicon/toxicity , Vigna/drug effects , Vigna/metabolism , Vigna/growth & development , Vigna/genetics , Antioxidants/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects , Catalase/metabolism , Ascorbate Peroxidases/metabolism , Reactive Oxygen Species/metabolism , Glutathione Reductase/metabolism , Glutathione Reductase/genetics
4.
Plant Biotechnol J ; 22(5): 1051-1066, 2024 May.
Article in English | MEDLINE | ID: mdl-38070179

ABSTRACT

To increase rice yields and feed billions of people, it is essential to enhance genetic gains. However, the development of new varieties is hindered by longer generation times and seasonal constraints. To address these limitations, a speed breeding facility has been established and a robust speed breeding protocol, SpeedFlower is developed that allows growing 4-5 generations of indica and/or japonica rice in a year. Our findings reveal that a high red-to-blue (2R > 1B) spectrum ratio, followed by green, yellow and far-red (FR) light, along with a 24-h long day (LD) photoperiod for the initial 15 days of the vegetative phase, facilitated early flowering. This is further enhanced by 10-h short day (SD) photoperiod in the later stage and day and night temperatures of 32/30 °C, along with 65% humidity facilitated early flowering ranging from 52 to 60 days at high light intensity (800 µmol m-2 s-1). Additionally, the use of prematurely harvested seeds and gibberellic acid treatment reduced the maturity duration by 50%. Further, SpeedFlower was validated on a diverse subset of 198 rice accessions from 3K RGP panel encompassing all 12 distinct groups of Oryza sativa L. classes. Our results confirmed that using SpeedFlower one generation can be achieved within 58-71 days resulting in 5.1-6.3 generations per year across the 12 sub-groups. This breakthrough enables us to enhance genetic gain, which could feed half of the world's population dependent on rice.


Subject(s)
Oryza , Humans , Oryza/genetics , Plant Breeding , Light
5.
J Adv Res ; 58: 1-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37164213

ABSTRACT

INTRODUCTION: Nodulin-26-like intrinsic proteins (NIPs) are integral membrane proteins belonging to the aquaporin family, that facilitate the transport of neutral solutes across the bilayer. The OsNIP2;1 a member of NIP-III class of aquaporins is permeable to beneficial elements like silicon and hazardous arsenic. However, the atomistic cross-talk of these molecules traversing the OsNIP2;1 channel is not well understood. OBJECTIVE: Due to the lack of genomic variation but the availability of high confidence crystal structure, this study aims to highlight structural determinants of metalloid permeation through OsNIP2;1. METHODS: The molecular simulations, combined with site-directed mutagenesis were used to probe the role of specific residues in the metalloid transport activity of OsNIP2;1. RESULTS: We drew energetic landscape of OsNIP2;1, for silicic and arsenous acid transport. Potential Mean Force (PMF) construction illuminate three prominent energetic barriers for metalloid passage through the pore. One corresponds to the extracellular molecular entry in the channel, the second located on ar/R filter, and the third size constriction in the cytoplasmic half. Comparative PMF for silicic acid and arsenous acid elucidate a higher barrier for silicic acid at the cytoplasmic constrict resulting in longer residence time for silicon. Furthermore, our simulation studies explained the importance of conserved residues in loop-C and loop-D with a direct effect on pore dynamics and metalloid transport. Next we assessed contribution of predicted key residues for arsenic uptake, by functional complementation in yeast. With the aim of reducing arsenic uptake while maintaining beneficial elements uptake, we identified novel OsNIP2;1 mutants with substantial reduction in arsenic uptake in yeast. CONCLUSION: We provide a comprehensive assessment of pore lining residues of OsNIP2;1 with respect to metalloid uptake. The findings will expand mechanistic understanding of aquaporin's metalloid selectivity and facilitate variant interpretation to develop novel alleles with preference for beneficial metalloid species and reducing hazardous ones.


Subject(s)
Aquaporins , Arsenic , Arsenites , Metalloids , Arsenic/metabolism , Silicon/metabolism , Saccharomyces cerevisiae/metabolism , Silicic Acid/metabolism , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/metabolism , Metalloids/metabolism
6.
Plant Physiol Biochem ; 203: 108057, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37793194

ABSTRACT

Nodulin 26-like intrinsic protein (NIP) subfamily of aquaporins (AQPs) in plants, is known to be involved in the uptake of metalloids including boron, germanium (Ge), arsenic (As), and silicon (Si). In the present study, a thorough evaluation of 55 AQPs found in the mungbean genome, including phylogenetic distribution, sequence homology, expression profiling, and structural characterization, contributed to the identification of VrNIP2-1 as a metalloid transporter. The pore-morphology of VrNIP2-1 was studied using molecular dynamics simulation. Interestingly, VrNIP2-1 was found to harbor an aromatic/arginine (ar/R) selectivity filter formed with ASGR amino acids instead of GSGR systematically reported in metalloid transporters (NIP2s) in higher plants. Evaluation of diverse cultivars showed a high level of Si accumulation in leaves indicating functional Si transport in mungbean. In addition, heterologous expression of VrNIP2-1 in yeast revealed As(III) and GeO2 transport activity. Similarly, VrNIP2-1 expression in Xenopus oocytes confirmed its Si transport ability. The metalloid transport activity with unique structural features will be helpful to better understand the solute specificity of NIP2s in mungbean and related pulses. The information provided here will also serve as a basis to improve Si uptake while restricting hazardous metalloids like As in plants.


Subject(s)
Aquaporins , Arsenic , Metalloids , Vigna , Vigna/genetics , Vigna/metabolism , Phylogeny , Aquaporins/genetics , Aquaporins/metabolism , Plants/metabolism , Membrane Transport Proteins/genetics , Silicon/metabolism , Arsenic/metabolism
7.
Genes (Basel) ; 14(3)2023 02 24.
Article in English | MEDLINE | ID: mdl-36980842

ABSTRACT

Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Mutation , Genomics , Fruit/genetics
8.
Mol Biotechnol ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000361

ABSTRACT

The effector proteins produced by plant pathogens are one of the essential components of host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal ß1/ß2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein-like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.

9.
Sci Data ; 10(1): 32, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650149

ABSTRACT

Grass pea (Lathyrus sativus) is a cool-season legume crop tolerant to drought, salinity, waterlogging, insects, and other biotic stresses. Despite these beneficial traits, this crop is not cultivated widely due to the accumulation of a neurotoxin - ß-N-oxalyl-L-α, ß-diaminopropionic acid (ß-ODAP) in the seeds and its association with neurolathyrism. In this study, we sequenced and assembled the genome of Lathyrus sativus cultivar Pusa-24, an elite Indian cultivar extensively used in breeding programs. The assembled genome of Lathyrus was 3.80 Gb in length, with a scaffold N50 of 421.39 Mb. BUSCO assessment indicated that 98.3% of highly conserved Viridiplantae genes were present in the assembly. A total of 3.17 Gb (83.31%) of repetitive sequences and 50,106 protein-coding genes were identified in the Lathyrus assembly. The Lathyrus genome assembly reported here thus provides a much-needed and robust foundation for various genetic and genomic studies in this vital legume crop.


Subject(s)
Amino Acids, Diamino , Lathyrus , Fabaceae , Lathyrus/genetics , Plant Breeding , Seeds/genetics , Genome, Plant
10.
Cells ; 11(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36429050

ABSTRACT

Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.


Subject(s)
Enterobacter , Genomics , Enterobacter/genetics , Silicates , Silicon , Plants/genetics , DNA
11.
Plant Sci ; 324: 111413, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963493

ABSTRACT

The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (ß-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.


Subject(s)
Arabidopsis , Magnaporthe , Oryza , Arabidopsis/genetics , Ascomycota , Disease Resistance/genetics , Glucuronidase/metabolism , Hormones , Magnaporthe/physiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Proline
12.
Genomics ; 114(5): 110436, 2022 09.
Article in English | MEDLINE | ID: mdl-35902069

ABSTRACT

Black rice is famous for containing high anthocyanin while Joha rice is aromatic with low anthocyanin containing rice from the North-Eastern Region (NER) of India. However, there are limited reports on the anthocyanin biosynthesis in Manipur Black rice. Therefore, the present study was aimed to understand the origin, domestication and anthocyanin biosynthesis pathways in Black rice using the next generation sequencing approaches. With the sequencing data, various analyses were carried out for differential expression and construction of a pan-genome. Protein coding RNA and small RNA sequencing analysis aided in determining 7415 and 131 differentially expressed transcripts and miRNAs, respectively in NER rice. This is the first extensive study on identification and expression analysis of miRNAs and their target genes in regulating anthocyanin biosynthesis in NER rice. This study will aid in better understanding for decoding the theory of high or low anthocyanin content in different rice genotypes.


Subject(s)
MicroRNAs , Oryza , Anthocyanins , Gene Expression Regulation, Plant , Genetic Variation , Genomics , India , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/genetics , Oryza/metabolism , Transcriptome
13.
J Fungi (Basel) ; 8(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35736067

ABSTRACT

Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice-M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.

14.
Cells ; 11(7)2022 03 28.
Article in English | MEDLINE | ID: mdl-35406707

ABSTRACT

Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.


Subject(s)
Oryza , Cooking , Edible Grain , Gene Expression , Haplotypes/genetics , Oryza/genetics , Oryza/metabolism , Quantitative Trait Loci , Polymorphism, Single Nucleotide
15.
Physiol Plant ; 174(1): e13616, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35199360

ABSTRACT

Lathyrus sativus, commonly known as grass pea, is a nutrient-rich pulse crop with remarkable climate-resilient attributes. However, wide use of this nutritious crop is not adopted owing to the presence of a non-protein amino acid ß-N-oxalyl-l-α,ß-diaminopropionic acid (ß-ODAP), which is neurotoxic if consumed in large quantities. We conducted a de novo transcriptomic profiling of two ODAP contrasting cultivars, Pusa-24 and its somaclonal variant Ratan, to understand the genetic changes leading to and associated with ß-ODAP levels. Differential gene expression analysis showed that a variety of genes are downregulated in low ß-ODAP cultivar Ratan and include genes involved in biotic/abiotic stress tolerance, redox metabolism, hormonal metabolism, and sucrose, and starch metabolism. Several genes related to chromatin remodeling are differentially expressed in cultivar Ratan. ß-ODAP biosynthetic genes in these cultivars showed differential upregulation upon stress. ODAP content of these cultivars varied differentially upon stress and development. Physiological experiments indicate reduced relative water content and perturbed abscisic acid levels in the low ODAP cultivar. Altogether, our results suggest that the low ODAP cultivar may have a reduced stress tolerance. The dataset provides insight into the biological role of ODAP and will be helpful for hypothesis-driven experiments to understand ODAP biosynthesis and regulation.


Subject(s)
Amino Acids, Diamino , Lathyrus , Abscisic Acid/metabolism , Amino Acids, Diamino/analysis , Amino Acids, Diamino/genetics , Amino Acids, Diamino/metabolism , Gene Expression , Lathyrus/chemistry , Lathyrus/genetics , Lathyrus/metabolism
16.
3 Biotech ; 12(2): 53, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35127308

ABSTRACT

Panicle blast is the most severe type of rice blast disease. Screening of rice genotypes for panicle blast resistance at the field level requires an efficient and robust method of inoculation. Here, we standardized a method that can be utilized for both small- and large-scale screening and assessment of panicle blast infection and disease reaction. The method involves inoculation of Magnaporthe oryzae spore culture in the neck of the rice panicle using a syringe and covering the inoculation site with wet cotton wrapped with aluminum foil to provide the required humidity for spore germination. The method was standardized using panicle blast-resistant cv. Tetep and susceptible cv. HP2216 inoculated with Mo-ni-025 isolate of M. oryzae. The method was evaluated at phenotypic as well as molecular level by expression analysis of disease responsive pathogenesis-related (PR) genes. We found this method simple, robust, reliable, and highly efficient for screening of large germplasm sets of rice for panicle blast. This was validated by screening the wild rice germplasm for panicle blast response in the field using three M. oryzae strains and subsequently with the most virulent strain in 45 EMS-induced mutants of Nagina 22 shortlisted based on field screening in a blast hotspot region. We identified five novel blast disease-resistant wild rice genotypes and 15 Nagina 22 mutants that can be used in breeding programmes.

17.
Bioinformatics ; 38(2): 318-324, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34601584

ABSTRACT

MOTIVATION: Tea is a cross-pollinated woody perennial plant, which is why, application of conventional breeding is limited for its genetic improvement. However, lack of the genome-wide high-density SNP markers and genome-wide haplotype information has greatly hampered the utilization of tea genetic resources toward fast-track tea breeding programs. To address this challenge, we have generated a first-generation haplotype map of tea (Tea HapMap-1). Out-crossing and highly heterozygous nature of tea plants, make them more complicated for DNA-level variant discovery. RESULTS: In this study, whole genome re-sequencing data of 369 tea genotypes were used to generate 2,334,564 biallelic SNPs and 1,447,985 InDels. Around 2928.04 million paired-end reads were used with an average mapping depth of ∼0.31× per accession. Identified polymorphic sites in this study will be useful in mapping the genomic regions responsible for important traits of tea. These resources lay the foundation for future research to understand the genetic diversity within tea germplasm and utilize genes that determine tea quality. This will further facilitate the understanding of tea genome evolution and tea metabolite pathways thus, offers an effective germplasm utilization for breeding the tea varieties. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Haplotypes , HapMap Project , Plant Breeding , Tea , Genome, Plant
18.
Cells ; 12(1)2022 12 26.
Article in English | MEDLINE | ID: mdl-36611890

ABSTRACT

Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) -0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean.


Subject(s)
Glycine max , Quantitative Trait Loci , Glycine max/chemistry , Quantitative Trait Loci/genetics , Chromosome Mapping , Transcriptome/genetics , Plant Breeding , Seeds/metabolism , Plant Oils/metabolism , Genomics
19.
Crit Rev Food Sci Nutr ; 62(4): 1003-1034, 2022.
Article in English | MEDLINE | ID: mdl-33086895

ABSTRACT

Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.


Subject(s)
Malnutrition , Solanum lycopersicum , Antioxidants , Carotenoids , Gene Editing , Humans , Solanum lycopersicum/genetics
20.
Front Microbiol ; 12: 738617, 2021.
Article in English | MEDLINE | ID: mdl-34764943

ABSTRACT

Alternaria brassicae is an important necrotrophic pathogen that infects the Brassicaceae family. A. brassicae, like other necrotrophs, also secretes various proteinaceous effectors and metabolites that cause cell death to establish itself in the host. However, there has been no systematic study of A. brassicae effectors and their roles in pathogenesis. The availability of the genome sequence of A. brassicae in public domain has enabled the search for effectors and their functional characterization. Nep1-like proteins (NLPs) are a superfamily of proteins that induce necrosis and ethylene biosynthesis. They have been reported from a variety of microbes including bacteria, fungi, and oomycetes. In this study, we identified two NLPs from A. brassicae viz. AbrNLP1 and AbrNLP2 and functionally characterized them. Although both AbrNLPs were found to be secretory in nature, they localized differentially inside the plant. AbrNLP2 was found to induce necrosis in both host and non-host species, while AbrNLP1 could not induce necrosis in both species. Additionally, AbrNLP2 was shown to induce pathogen-associated molecular pattern (PAMP)-triggered immunity in both host and non-host species. Overall, our study indicates that AbrNLPs are functionally and spatially (subcellular location) distinct and may play different but important roles during the pathogenesis of A. brassicae.

SELECTION OF CITATIONS
SEARCH DETAIL