Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 45(8): 6296-6310, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623216

ABSTRACT

Lingonberry (Vaccinium vitis-idaea L.) is an important and valuable horticultural crop due to its high antioxidant properties. Plant tissue culture is an advanced propagation system employed in horticultural crops. However, the progeny derived using this technique may not be true-to-type. In order to obtain the maximum return of any agricultural enterprise, uniformity of planting materials is necessary, which sometimes is not achieved due to genetic and epigenetic instabilities under in vitro culture. Therefore, we analyzed morphological traits and genetic and epigenetic variations under tissue-culture and greenhouse conditions in lingonberry using molecular markers. Leaf length and leaf width under greenhouse conditions and shoot number per explant, shoot height and shoot vigor under in vitro conditions were higher in hybrid H1 compared to the cultivar Erntedank. Clonal fidelity study using one expressed sequence tag (EST)-polymerase chain reaction (PCR), five EST-simple sequence repeat (SSR) and six genomic (G)-SSR markers revealed monomorphic bands in micropropagated shoots and plants in lingonberry hybrid H1 and cultivar Erntedank conforming genetic integrity. Epigenetic variation was studied by quantifying cytosine methylation using a methylation-sensitive amplification polymorphism (MSAP) technique. DNA methylation ranged from 32% in greenhouse-grown hybrid H1 to 44% in cultivar Erntedank under a tissue culture system. Although total methylation was higher in in vitro grown shoots, fully methylated bands were observed more in the greenhouse-grown plants. On the contrary, hemimethylated DNA bands were more prominent in tissue culture conditions as compared to the greenhouse-grown plants. The study conclude that lingonberry maintains its genetic integrity but undergoes variable epigenetic changes during in vitro and ex vitro conditions.

2.
Sci Rep ; 12(1): 12487, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864145

ABSTRACT

Epigenetic variation plays a role in developmental gene regulation and responses to the environment. An efficient interaction of zeatin-induced cytosine methylation and secondary compounds has been displayed for the first time in tissue-culture shoots/plants of lingonberry (Vaccinium vitis-idaea L.) cultivar Erntedank in vitro (NC1, in a liquid medium; NC2, on a semi-solid medium), ex vitro (NC3, node culture-derived plants; LC1, leaf culture-derived plants) and its cutting-propagated (ED) plants. Through methylation-sensitive amplification polymorphism (MSAP) assay, we observed highest methylated sites in leaf regenerants (LC1) from all primer combinations (108 bands), along with the highest secondary metabolites. The four types of tissue culture-derived shoots/plants (NC1, NC2, NC3, LC1) showed higher methylation bands than cutting propagated donor plants (ED) that exhibited 79 bands of methylation, which is comparatively low. Our study showed more methylation in micropropagated shoots/plants than those derived from ED plants. On the contrary, we observed higher secondary metabolites in ED plants but comparatively less in micropropagated shoots (NC1, NC2) and plants (NC3, LC1).


Subject(s)
Vaccinium vitis-idaea , DNA Methylation , Epigenomics , Plant Leaves/genetics , Plant Leaves/metabolism , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...