Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Med ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37350009

ABSTRACT

BACKGROUND: For any drug molecule, it is mandatory to pass the drug approval process of the concerned regulatory authority, before being marketed. The Food and Drug Administration (FDA), throughout the year, approves several new drugs for safety and efficacy. In addition to new drug approvals, FDA also works on improving access to generic drugs, aimed to lower the cost of drugs for patients and improve access to treatments. In the year 2022 twelve new drug therapies were approved for managing varying cancers. METHOD: This manuscript is focused to describe the pharmacological aspects including therapeutic uses, mechanisms of actions, pharmacokinetics, adverse effects, doses, indication for special cases, contraindications, etc., of novel FDA-approved anticancer drug therapies in the year 2022. RESULT: FDA has approved about 29% (11 out of 37) novel drug therapies for varying types of cancers such as lung cancer, breast cancer, prostate cancer, melanoma, leukemia, etc. The Center for Drug Evaluation and Research CDER has reported that 90% of these anticancer drugs (e.g. Adagrasib, Futibatinib, Mirvetuximabsoravtansine-gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Olutasidenib, Pacritinib, Tebentafusp-tebn, Teclistamab-cqyv, and Tremelimumab-actl) as orphan drugs and recommended to treat rare or uncommon cancers such as non-small cell lung cancer, metastatic intrahepatic cholangio-carcinoma, epithelial ovarian cancer, follicular lymphoma, metastatic melanoma, metastatic uveal melanoma, etc. CDER has identified six anticancer drugs (e.g. Lutetium (177Lu)vipivotidetetraxetan, Mirvetuximabsoravtansine-gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Tebentafusp-tebn, Teclistamab-cqyv) as first-in-class drugs i.e. drugs having different mechanisms of action from the already existing ones. The newly approved anticancer drugs shall provide more efficient treatment options for cancer patients. Three FDA-approved anticancer drugs in the year 2023 are also briefly described in the manuscript. CONCLUSION: This manuscript, describing the pharmacological aspects of eleven anticancer novel drug therapies approved by the FDA, shall serve as a helpful document for cancer patients, concerned academicians, researchers, and clinicians, especially oncologists.

3.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688758

ABSTRACT

D-amino acids, the important components of the bacterial cell walls, are valuable molecular and genetic markers of bacterial-derived organic material in the environment. D-serine, a racemization product of L-serine is one such amino acid present in various prokaryotes and eukaryotes. It is a well-recognized regulator of various activities in the human nervous system. In plants, it has a role in the nitrogen cycle regulation and pollen tube growth. Serine enantiomers are present in different concentrations and few bacterial strains are reported to contribute to D-serine in the environment. During the present study, soil samples from different places in North India were collected and processed to isolate and screen the bacteria on M9 minimal media (Himedia) for D-serine synthesis. Thin-layer chromatography (TLC Silica gel 60 F 254 (20 × 20 cm, Merck, Darmstadt, Germany) and Mass spectroscopic analysis (Bruker MICROTOF II spectrometer) studies, etc were performed. D-serine-producing isolates were characterized as per standard procedures. Bacterial isolate A1C1 with maximum D-serine (0.919 ± 0.02 nM) synthesis under optimal growth conditions (37°C ± 0.5, 150 ± 0.5 RPM, and 7 ± 0.5 pH) was identified as Bacillus tequilensis based on 16sRNA sequencing. The isolate could be a valuable serine racemization tool for various industrial and environmental applications.


Subject(s)
Bacillus , Serine , Humans , Serine/analysis , Serine/chemistry , Serine/metabolism , Amino Acids/metabolism , Bacillus/metabolism , Chromatography, Thin Layer
4.
Nanomaterials (Basel) ; 11(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073274

ABSTRACT

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.

5.
Can J Microbiol ; 67(2): 119-137, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32783775

ABSTRACT

Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance have triggered exploration of natural alternatives to stabilize its seriousness. Antimicrobial peptides are small, positively charged oligopeptides that are as potent as commercially available antibiotics against a wide spectrum of organisms, such as Gram-positive bacteria, Gram-negative bacteria, viruses, and fungal strains. In addition to their antibiotic capabilities, these peptides possess anticancer activity, activate the immune response, and regulate inflammation. Peptides have distinct modes of action and fall into various categories due to their amino acid composition. Although antimicrobial peptides specifically target the bacterial cytoplasmic membrane, they can also target the cell nucleus and protein synthesis. Owing to the increasing demand for novel treatments against the threat of antimicrobial resistance, naturally synthesized peptides are a beneficial development concept. Antimicrobial peptides are pervasive and can easily be modified using de-novo synthesis technology. Antimicrobial peptides can be isolated from natural resources such as humans, plants, bacteria, and fungi. This review gives a brief overview of antimicrobial peptides and their diastereomeric composition. Other current trends, the future scope of antimicrobial peptides, and the role of d-amino acids are also discussed, with a specific emphasis on the design and development of new drugs.


Subject(s)
Amino Acids/chemistry , Drug Resistance, Microbial/drug effects , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Membrane/drug effects , Cell Nucleus/drug effects , Drug Development , Pore Forming Cytotoxic Proteins/chemical synthesis , Protein Biosynthesis/drug effects , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...