Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
eNeuro ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413199

ABSTRACT

Dopamine system dysfunction, observed in animal models with psychosis-like symptomatology, can be restored by targeting Gamma-Aminobutyric Acid type A receptors (GABAAR) containing the α5, but not α1, subunit in the ventral hippocampus (vHipp). The reason for this discrepancy in efficacy remains elusive; however, one key difference is that α1GABAARs are primarily located in the synapse, whereas α5GABAARs are mostly extrasynaptic. To test whether receptor location is responsible for this difference in efficacy, we injected a small interfering ribonucleic acid (siRNA) into the vHipp to knock down radixin, a scaffolding protein that holds α5GABAARs in the extrasynaptic space. We then administered GL-II-73, a positive allosteric modulator of α5GABAARs (α5-PAM) known to reverse shock-induced deficits in dopamine system function, to determine if shifting α5GABAARs from the extrasynaptic space to the synapse would prevent the effects of α5-PAM on dopamine system function. As expected, knockdown of radixin significantly decreased radixin-associated α5GABAARs and increased the proportion of synaptic α5GABAARs, without changing the overall expression of α5GABAARs. Importantly, GL-II-73 was no longer able to modulate dopamine neuron activity in radixin-knockdown rats, indicating that the extrasynaptic localization of α5GABAARs is critical for hippocampal modulation of the dopamine system. These results may have important implications for clinical use of GL-II-73, as periods of high hippocampal activity appear to favor synaptic α5GABAARs, thus efficacy may be diminished in conditions where aberrant hippocampal activity is present.Significance Statement Currently available treatments for psychosis, a debilitating symptom linked with several brain disorders, are inadequate. While they can help manage symptoms in some patients, they do so imperfectly. They are also associated with severe side effects that can cause discontinuation of medication. This study provides preclinical evidence that the drug, GL-II-73, possesses the ability to modulate dopamine activity, a key player in psychosis symptoms, and further provides some mechanistic details regarding these effects. Overall, this work contributes to the growing body of literature suggesting that GL-II-73 and similar compounds may possess antipsychotic efficacy.

2.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352313

ABSTRACT

The neglected tropical disease schistosomiasis infects over 200 million people worldwide and is treated with just one broad spectrum antiparasitic drug (praziquantel). Alternative drugs are needed in the event of emerging praziquantel resistance or treatment failure. One promising lead that has shown efficacy in animal models and a human clinical trial is the benzodiazepine meclonazepam, discovered by Roche in the 1970's. Meclonazepam was not brought to market because of dose-limiting sedative side effects. However, the human target of meclonazepam that causes sedation (GABAARs) are not orthologous to the parasite targets that cause worm death. Therefore, we were interested in whether the structure of meclonazepam could be modified to produce antiparasitic benzodiazepines that do not cause host sedation. We synthesized 18 meclonazepam derivatives with modifications at different positions on the benzodiazepine ring system and tested them for in vitro antiparasitic activity. This identified five compounds that progressed to in vivo screening in a murine model, two of which cured parasite infections with comparable potency to meclonazepam. When these two compounds were administered to mice that were run on the rotarod test, both were less sedating than meclonazepam. These findings demonstrate the proof of concept that meclonazepam analogs can be designed with an improved therapeutic index, and point to the C3 position of the benzodiazepine ring system as a logical site for further structure-activity exploration to further optimize this chemical series.

3.
ACS Chem Neurosci ; 15(3): 517-526, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38175916

ABSTRACT

KRM-II-81 (1) is an imidazodiazepine GABAA receptor (GABAAR) potentiator with broad antiseizure efficacy and a low sedative burden. A brominated analogue, DS-II-73 (5), was synthesized and pharmacologically characterized as a potential backup compound as KRM-II-81 moves forward into development. The synthesis from 2-amino-5-bromophenyl)(pyridin-2yl)methanone (6) was processed in five steps with an overall yield of 38% and without the need for a palladium catalyst. GABAAR binding occurred with a Ki of 150 nM, and only 3 of 41 screened binding sites produced inhibition ≥50% at 10 µM, and the potency to induce cytotoxicity was ≥240 mM. DS-II-73 was selective for α2/3/5- over that of α1-containing GABAARs. Oral exposure of plasma and brain of rats was more than sufficient to functionally impact GABAARs. Tonic convulsions in mice and lethality induced by pentylenetetrazol were suppressed by DS-II-73 after oral administration and latencies to clonic and tonic seizures were prolonged. Cortical slice preparations from a patient with pharmacoresistant epilepsy (mesial temporal lobe) showed decreases in the frequency of local field potentials by DS-II-73. As with KRM-II-81, the motor-impairing effects of DS-II-73 were low compared to diazepam. Molecular docking studies of DS-II-73 with the α1ß3γ2L-configured GABAAR showed low interaction with α1His102 that is suggested as a potential molecular mechanism for its low sedative side effects. These findings support the viability of DS-II-73 as a backup molecule for its ethynyl analogue, KRM-II-81, with the human tissue data providing translational credibility.


Subject(s)
Epilepsy, Temporal Lobe , Mice , Humans , Rats , Animals , Epilepsy, Temporal Lobe/drug therapy , Receptors, GABA-A/metabolism , Molecular Docking Simulation , Seizures/drug therapy , Oxazoles/pharmacology , Brain/metabolism , Hypnotics and Sedatives/therapeutic use , Neural Networks, Computer , Anticonvulsants/pharmacology
4.
Front Pharmacol ; 14: 1273633, 2023.
Article in English | MEDLINE | ID: mdl-37849734

ABSTRACT

Introduction: Dravet syndrome (DS) is an intractable epilepsy syndrome concomitant with neurodevelopmental disorder that begins in infancy. DS is dominantly caused by mutations in the SCN1A gene, which encodes the α subunit of a voltage-gated Na channel. Pre-synaptic inhibitory dysfunction is regarded as the pathophysiological mechanism, but an effective strategy for ameliorating seizures and behavioral problems is still under development. Here, we evaluated the effects of KRM-II-81, a newly developed positive allosteric modulator for α 2/3 subunit containing GABAA receptors (α2/3-GABAAR) in a mice model of DS both in vivo and at the neuronal level. Methods: We used knock-in mice carrying a heterozygous, clinically relevant SCN1A mutation (background strain: C57BL/6 J) as a model of the DS (Scn1a WT/A1783V mice), knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V). Seizure threshold and locomotor activity was evaluated by using the hyperthermia-induced seizure paradigm and open filed test, respectively. Anxiety-like behavior was assessed by avoidance of the center region in locomotor activity. We estimated a sedative effect by the total distance traveled in locomotor activity and grip strength. Inhibitory post synaptic currents (IPSCs) were recorded from a hippocampal CA1 pyramidal neuron in an acutely prepared brain slice. Results: KRM-II-81 significantly increased the seizure threshold of Scn1a WT/A1783V mice in a dose-dependent manner. A low dose of KRM-II-81 specifically improved anxiety-like behavior of Scn1a WT/A1783V mice. A sedative effect was induced by relatively high dose of KRM-II-81 in Scn1a WT/A1783V mice, the dose of which was not sedative for WT mice. KRM-II-81 potentiated IPSCs by increasing its decay time kinetics. This effect was more prominent in Scn1a WT/A1783V mice. Discussion: Higher activation of α2/3-GABAAR by KRM-II-81 suggests a compensatory modification of post synaptic inhibitory function against presynaptic inhibitory dysfunction in Scn1a WT/A1783V. The increased sensitivity for KRM-II-81 may be relevant to the distinct dose-dependent effect in each paradigm of Scn1a WT/A1783V mice. Conclusion: Selective activation for α2/3-GABAAR by KRM-II-81 could be potential therapeutic strategy for treating seizures and behavioral problems in DS.

5.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662217

ABSTRACT

Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.

6.
Eur J Pharm Sci ; 189: 106557, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544333

ABSTRACT

Recently, nanocrystal dispersions have been considered as a promising formulation strategy to improve the bioavailability of the deuterated pyrazoloquinolinone ligand DK-I-56-1 (7­methoxy-2-(4­methoxy-d3-phenyl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one). In the current study, the freeze-drying process (formulation and process parameters) was investigated to improve the storage stability of the previously developed formulation. Different combinations of lyoprotectant (sucrose or trehalose) and bulking agent (mannitol) were varied while formulations were freeze-dried under two conditions (primary drying at -10 or -45 °C). The obtained lyophilizates were characterized in terms of particle size, solid state properties and morphology, while the interactions within the samples were analyzed by Fourier transform infrared spectroscopy. In the preliminary study, three formulations were selected based on the high redispersibility index values (around 95%). The temperature of primary drying had no significant effect on particle size, but stability during storage was impaired for samples dried at -10 °C. Samples dried at lower temperature were more homogeneous and remained stable for three months. It was found that the optimal ratio of sucrose or trehalose to mannitol was 3:2 at a total concentration of 10% to achieve the best stability (particle size < 1.0 µm, polydispersity index < 0.250). The amorphous state of lyoprotectants probably provided a high degree of interaction with nanocrystals, while the crystalline mannitol provided an elegant cake structure. Sucrose was superior to trehalose in maintaining particle size during freeze-drying, while trehalose was more effective in keeping particle size within limits during storage. In conclusion, results demonstrated that the appropriate combination of sucrose/trehalose and mannitol together with the appropriate selection of lyophilization process parameters could yield nanocrystals with satisfactory stability.

7.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511546

ABSTRACT

Of the 35 million people in the world suffering from Alzheimer's Disease (AD), up to half experience comorbid psychosis. Antipsychotics, used to treat psychosis, are contraindicated in elderly patients because they increase the risk of premature death. Reports indicate that the hippocampus is hyperactive in patients with psychosis and those with AD. Preclinical studies have demonstrated that the ventral hippocampus (vHipp) can regulate dopamine system function, which is thought to underlie symptoms of psychosis. A viral-mediated approach was used to express mutated human genes known to contribute to AD pathology: the Swedish (K670N, M671L), Florida (I716V), and London (V717I) mutations of amyloid precursor protein and two mutations (M146L and L286V) of presenilin 1 specifically in the vHipp, to investigate the selective contribution of AD-like pathology in this region. We observed a significant increase in dopamine neuron population activity and behavioral deficits in this AD-AAV model that mimics observations in rodent models with psychosis-like symptomatologies. Further, systemic administration of MP-III-022 (α5-GABAA receptor selective positive allosteric modulator) was able to reverse aberrant dopamine system function in AD-AAV rats. This study provides evidence for the development of drugs that target α5-GABAA receptors for patients with AD and comorbid psychosis.


Subject(s)
Alzheimer Disease , Psychotic Disorders , Rats , Humans , Animals , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Receptors, GABA-A/metabolism , Dopamine/metabolism , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Hippocampus/metabolism , Disease Models, Animal
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511346

ABSTRACT

Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE.


Subject(s)
Epilepsy, Temporal Lobe , Pilocarpine , Animals , Pilocarpine/adverse effects , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , Dopamine/metabolism , Quality of Life , Hippocampus/metabolism , Disease Models, Animal
9.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37502875

ABSTRACT

Dopamine system dysfunction, observed in animal models with psychosis-like symptomatology, can be restored by targeting Gamma-Aminobutyric Acid type A receptors (GABA A R) containing the α5, but not α1, subunit in the ventral hippocampus (vHipp). The reason for this discrepancy in efficacy remains elusive; however, one key difference is that α1GABA A Rs are primarily located in the synapse, whereas α5GABA A Rs are mostly extrasynaptic. To test whether receptor location is responsible for this difference in efficacy, we injected a small interfering ribonucleic acid (siRNA) into the vHipp to knock down radixin, a scaffolding protein that holds α5GABA A Rs in the extrasynaptic space. We then administered GL-II-73, a positive allosteric modulator of α5GABA A Rs (α5-PAM) known to reverse shock-induced deficits in dopamine system function, to determine if shifting α5GABA A Rs from the extrasynaptic space to the synapse would prevent the effects of α5-PAM on dopamine system function. As expected, knockdown of radixin significantly decreased radixin-associated α5GABA A Rs and increased the proportion of synaptic α5GABA A Rs, without changing the overall expression of α5GABA A Rs. Importantly, GL-II-73 was no longer able to modulate dopamine neuron activity in radixin-knockdown rats, indicating that the extrasynaptic localization of α5GABA A Rs is critical for hippocampal modulation of the dopamine system. These results may have important implications for clinical use of GL-II-73, as periods of high hippocampal activity appear to favor synaptic α5GABA A Rs, thus efficacy may be diminished in conditions where aberrant hippocampal activity is present. Significance Statement: Dopamine activity is known to be altered in both psychosis patients and in animal models, with promising new antipsychotics restoring normal dopamine system function. One such drug is GL-II-73, a positive allosteric modulator of α5GABA A Rs (α5-PAM). Interestingly, previous research has shown that a positive allosteric modulator of α1GABA A Rs (α1-PAM) does not share this ability, even when directly given to the ventral hippocampus, a region known to modulate dopamine activity. One potential explanation for this difference we examined in this study is that α1GABA A Rs are primarily located in the synapse, whereas α5GABA A Rs are mostly extrasynaptic. Determining the mechanism of this differential efficacy could lead to the refinement of antipsychotic treatment and improve patient outcomes overall.

10.
Molecules ; 28(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37375326

ABSTRACT

GABA mediates inhibitory actions through various GABAA receptor subtypes, including 19 subunits in human GABAAR. Dysregulation of GABAergic neurotransmission is associated with several psychiatric disorders, including depression, anxiety, and schizophrenia. Selective targeting of α2/3 GABAARs can treat mood and anxiety, while α5 GABAA-Rs can treat anxiety, depression, and cognitive performance. GL-II-73 and MP-III-022, α5-positive allosteric modulators have shown promising results in animal models of chronic stress, aging, and cognitive disorders, including MDD, schizophrenia, autism, and Alzheimer's disease. Described in this article is how small changes in the structure of imidazodiazepine substituents can greatly impact the subtype selectivity of benzodiazepine GABAAR. To investigate alternate and potentially more effective therapeutic compounds, modifications were made to the structure of imidazodiazepine 1 to synthesize different amide analogs. The novel ligands were screened at the NIMH PDSP against a panel of 47 receptors, ion channels, including hERG, and transporters to identify on- and off-target interactions. Any ligands with significant inhibition in primary binding were subjected to secondary binding assays to determine their Ki values. The newly synthesized imidazodiazepines were found to have variable affinities for the benzodiazepine site and negligible or no binding to any off-target profile receptors that could cause other physiological problems.


Subject(s)
Cognitive Dysfunction , Receptors, GABA-A , Animals , Humans , Receptors, GABA-A/metabolism , Ligands , GABA-A Receptor Agonists/pharmacology , Benzodiazepines/pharmacology , Benzodiazepines/metabolism , Cognitive Dysfunction/drug therapy , gamma-Aminobutyric Acid/metabolism
11.
Biomolecules ; 13(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36830567

ABSTRACT

Treatment of tremors, such as in essential tremor (ET) and Parkinson's disease (PD) is mostly ineffective. Exact tremor pathomechanisms are unknown and relevant animal models are missing. GABA-A receptor is a target for tremorolytic medications, but current non-selective drugs produce side effects and have safety liabilities. The aim of this study was a search for GABA-A subunit-specific tremorolytics using different tremor-generating mechanisms. Two selective positive allosteric modulators (PAMs) were tested. Zolpidem, targeting GABA-A α1, was not effective in models of harmaline-induced ET, pimozide- or tetrabenazine-induced tremulous jaw movements (TJMs), while the novel GABA-A α2/3 selective MP-III-024 significantly reduced both the harmaline-induced ET tremor and pimozide-induced TJMs. While zolpidem decreased the locomotor activity of the rats, MP-III-024 produced small increases. These results provide important new clues into tremor suppression mechanisms initiated by the enhancement of GABA-driven inhibition in pathways controlled by α2/3 but not α1 containing GABA-A receptors. Tremor suppression by MP-III-024 provides a compelling reason to consider selective PAMs targeting α2/3-containing GABA-A receptors as novel therapeutic drug targets for ET and PD-associated tremor. The possibility of the improved tolerability and safety of this mechanism over non-selective GABA potentiation provides an additional rationale to further pursue the selective α2/3 hypothesis.


Subject(s)
Essential Tremor , Tremor , Rats , Animals , Tremor/chemically induced , Tremor/drug therapy , Pimozide/adverse effects , Zolpidem/adverse effects , Harmaline/adverse effects , Receptors, GABA-A/metabolism , Rats, Sprague-Dawley , Ligands , Essential Tremor/metabolism , gamma-Aminobutyric Acid
12.
J Pharmacol Exp Ther ; 385(1): 50-61, 2023 04.
Article in English | MEDLINE | ID: mdl-36746611

ABSTRACT

To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPP-III-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPP-III-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to α1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT: A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the α1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81.


Subject(s)
Anticonvulsants , Epilepsy , Rats , Mice , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Molecular Docking Simulation , Seizures/drug therapy , Seizures/chemically induced , Oxazoles/pharmacology , Epilepsy/drug therapy , Receptors, GABA-A/metabolism , Pentylenetetrazole , Electroshock
13.
Drug Dev Res ; 84(3): 527-531, 2023 05.
Article in English | MEDLINE | ID: mdl-36748904

ABSTRACT

A series of imidazodiazepines has been developed that possess reduced sedative liabilities but retain efficacy in anticonvulsant screening models. The latest of these compounds, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole known as KRM-II-81) is currently awaiting advancement into the clinic. A deuterated structural analog (D5-KRM-II-81) was made as a potential backup compound and studied here in comparison to KRM-II-81. In the present study, both compounds significantly prevented seizures in mice induced by 6 Hz (44 mA) electrical stimulation without significantly altering motoric function on a rotarod after intraperitoneal administration. Both compounds also significantly prevented clonic seizures, tonic seizures, and lethality induced by pentylenetetrazol in mice when given orally. D5-KRM-II-81 had a slightly longer duration of action against clonic and tonic seizures than KRM-II-81. Oral administration of 100 mg/kg of either KRM-II-81 or D5-KRM-II-81 was significantly less disruptive of sensorimotor function in mice than diazepam (5 mg/kg, p.o.). The present report documents that D5-KRM-II-81 represents another in this series of imidazodiazepines with anticonvulsant activity at doses that do not impair sensorimotor function.


Subject(s)
Anticonvulsants , Diazepam , Mice , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Diazepam/pharmacology , Diazepam/therapeutic use , Oxazoles , Seizures/chemically induced , Seizures/drug therapy
14.
Drug Alcohol Depend ; 243: 109735, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36549228

ABSTRACT

BACKGROUND: Cue-exposure therapy (CET) is an effective approach for anxiety-related disorders, but its effectiveness for substance use disorders is less clear. One potential means of improving CET outcomes is to include a cognitive-enhancing pharmacotherapy. This study evaluated d-cycloserine (DCS) and RY-023, putative cognitive enhancers targeting glutamate and GABA systems, respectively, in a monkey model of CET for alcohol use disorder. METHODS: Male rhesus monkeys (n = 4) underwent multiple cycles of the CET procedure. During baseline (Phase 1), monkeys self-administered an ethanol solution under a fixed-ratio schedule and limited access conditions such that every 5th response in a 3-h session resulted in 30-s access to a drinking spout and a change in ethanol-paired cue lights from white to red. Behavior then was extinguished (Phase 2) by omitting the ethanol solution yet retaining the ethanol-paired stimulus lights. Monkeys also received injections of vehicle, DCS (3 mg/kg), a partial agonist at the glycine modulatory site on glutamatergic NMDA receptors, or the α5GABAA receptor-selective inverse agonist RY-023 (0.03 or 0.3 mg/kg). Once responding declined, monkeys underwent a cue reactivity test (Phase 3), and then returned to self-administration the following day to assess reacquisition (Phase 4). RESULTS: Through multiple cycles, self-administration remained stable. Compared to vehicle, DCS facilitated extinction of ethanol seeking (Phase 2) and delayed reacquisition of ethanol self-administration (Phase 4). In contrast, RY-023 facilitated extinction (Phase 2) and reduced cue reactivity (Phase 3). CONCLUSIONS: Adjunctive pharmacotherapy can improve CET outcomes, but the choice of pharmacotherapy should be dependent on the outcome of interest.


Subject(s)
Alcoholism , Implosive Therapy , Nootropic Agents , Animals , Male , Alcoholism/drug therapy , Alcoholism/psychology , Macaca mulatta , Nootropic Agents/pharmacology , Nootropic Agents/therapeutic use , Cues , Drug Inverse Agonism , Extinction, Psychological , Cycloserine/pharmacology , Cycloserine/therapeutic use , Ethanol/pharmacology , Self Administration
15.
ACS Omega ; 7(31): 27550-27559, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35967038

ABSTRACT

Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation.

16.
CNS Neurosci Ther ; 28(11): 1767-1778, 2022 11.
Article in English | MEDLINE | ID: mdl-35822698

ABSTRACT

AIMS: GABAergic modulation involved in cognitive processing appears to be substantially changed in Alzheimer's disease (AD). In a widely used 5xFAD model of AD, we aimed to assess if negative and positive allosteric modulators of α5 GABAA receptors (NAM and PAM, respectively) would affect social interaction, social, object and spatial memory, and neuroinflammation. METHODS: After 10-day treatment with PAM, NAM, or solvent, 6-month-old transgenic and non-transgenic 5xFAD mice underwent testing in a behavioral battery. Gene expressions of IL-1ß, IL-6, TNF-α, GFAP, and IBA-1 were determined in hippocampus and prefrontal cortex by qPCR. RESULTS: PAM treatment impaired spatial learning in transgenic females compared to solvent-treated transgenic females, and social recognition in transgenic and non-transgenic males. NAM treatment declined social interaction in transgenic and non-transgenic males, while had beneficial effect on cognitive flexibility in non-transgenic males compared to solvent-treated non-transgenic males. Transgenic animals have not fully displayed cognitive symptoms, but neuroinflammation was confirmed. NAM reduced proinflammatory gene expressions in transgenic females and astrogliosis in transgenic males compared to pathological controls. CONCLUSION: PAM and NAM failed to exert favorable behavioral effects in transgenic animals. Suppression of neuroinflammation obtained with NAM calls for more studies with GABAergic ligands in amyloid beta- and/or tau-dependent models with prominent neuroinflammation.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Interleukin-6/metabolism , Male , Memory , Mice , Mice, Transgenic , Neuroinflammatory Diseases , Receptors, GABA-A/genetics , Social Interaction , Solvents , Tumor Necrosis Factor-alpha/metabolism , gamma-Aminobutyric Acid
17.
Neuropsychopharmacology ; 47(9): 1608-1619, 2022 08.
Article in English | MEDLINE | ID: mdl-35701547

ABSTRACT

Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.


Subject(s)
Anti-Anxiety Agents , Depressive Disorder, Major , Animals , Anti-Anxiety Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Disease Models, Animal , Humans , Mice , Neurons , Receptors, GABA-A
18.
Autism Res ; 15(5): 806-820, 2022 05.
Article in English | MEDLINE | ID: mdl-35266641

ABSTRACT

Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABAA receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP-III-022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP-III-022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP-III-022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP-III-022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex-specific manner. LAY SUMMARY: In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism-like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Receptors, GABA-A , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Behavior, Animal/physiology , Calcium/metabolism , Calcium/pharmacology , Disease Models, Animal , Female , Male , Pregnancy , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Social Behavior , Valproic Acid/pharmacology , gamma-Aminobutyric Acid
19.
Behav Brain Res ; 428: 113832, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35259414

ABSTRACT

Dysregulation of GABAergic neurotransmission has long been implicated in several psychiatric disorders, including schizophrenia, depression, and anxiety disorders. Alpha 5 subunit-containing GABAA receptors (α5-GABAAR), which are expressed mainly by pyramidal neurons in the hippocampus, have been proposed as a potential target to treat these psychiatric disorders. Here, we evaluated the effects produced by GL-II-73 and SH-053-2'F-R-CH3 (1, 5, and 10 mg/kg), two positive allosteric modulators of α5-GABAAR in behavioral tests sensitive to drugs with anxiolytic, antidepressant, and antipsychotic properties in male and female C57BL/6 mice. In both males and females, GL-II-73 produced an anxiolytic-like effect in the elevated plus-maze (EPM) and novelty-suppressed feeding and a rapid and sustained antidepressant-like effect in the forced swim test. GL-II-73 also induced antipsychotic-like effects in males indicated by attenuating MK-801-induced hyperlocomotion and prepulse inhibition (PPI) disruption. However, GL-II-73 per se increased locomotor activity and impaired fear memory extinction in males and females and PPI in males. On the other hand, SH-053-2'F-R-CH3 induced anxiolytic-like effects in the EPM and facilitated fear memory extinction in males. Contrary to GL-II-73, SH-053-2'F-R-CH3 attenuated MK-801-induced hyperlocomotion and PPI disruption in females but not in males. Neither of these drugs induced rewarding effects or impaired motor coordination. These findings suggest that GL-II-73 and SH-053-2'F-R-CH3 cause distinct sex-dependent behavioral responses and support continued preclinical research on the potential of positive allosteric modulators of α5-GABAAR for the treatment of psychiatric disorders.


Subject(s)
Anti-Anxiety Agents , Antipsychotic Agents , Animals , Anti-Anxiety Agents/pharmacology , Benzodiazepines/pharmacology , Dizocilpine Maleate , Female , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, GABA-A , gamma-Aminobutyric Acid
20.
Biopharm Drug Dispos ; 43(2): 66-75, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35194800

ABSTRACT

The imidazodiazepine, (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo [f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a new α2/3-selective GABAkine (gamma aminobutyric acid A receptor potentiator) with anticonvulsant, anxiolytic, and antinociceptive activity in preclinical models. Reducing metabolism was utilized as a means of potentially extending the half-life of KRM-II-81. In vitro and in vivo studies were conducted to evaluate metabolic liabilities. Incubation of KRM-II-81 in hepatocytes revealed sites of potential metabolism on the oxazole and the diazepine rings. These sites were targeted in the design of a deuterated analog (D5-KRM-II-81) that could be evaluated as a potentially longer-acting analog. In contrast to computer predictions, peak plasma concentrations of D5-KRM-II-81 in rats were not significantly greater than those produced by KRM-II-81 after oral administration. Furthermore, brain disposition of KRM-II-81 was higher than that of D5-KRM-II-81. The half-life of the two compounds in either plasma or brain did not statistically differ from one another but the tmax for D5-KRM-II-81 occurred slightly earlier than for KRM-II-81. Non-metabolic considerations might be relevant to the lack of increases in exposure by D5-KRM-II-81. Alternative sites of metabolism on KRM-II-81, not targeted by the current deuteration process, are also possible. Despite its lack of augmented exposure, D5-KRM-II-81, like KRM-II-81, significantly prevented seizures induced by pentylenetetrazol when given orally. The present findings introduce a new orally active anticonvulsant GABAkine, D5-KRM-II-81.


Subject(s)
Antibiotics, Antitubercular , Anticonvulsants , Animals , Anticonvulsants/pharmacology , Oxazoles/metabolism , Rats , Receptors, GABA-A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...