Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell Host Microbe ; 32(3): 322-334.e9, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38423015

ABSTRACT

Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Inflammatory Bowel Diseases/microbiology , Inflammation , DNA
2.
Nat Prod Rep ; 40(9): 1479-1497, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37231979

ABSTRACT

Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or ß-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes. When synthesized, chains of cyanophycin coalesce into large, inert, membrane-less granules. Although discovered in cyanobacteria, cyanophycin is made by species throughout the bacterial kingdom, and cyanophycin metabolism provides advantages for toxic bloom forming algae and some human pathogens. Some bacteria have developed dedicated schemes for cyanophycin accumulation and use, which include fine temporal and spatial regulation. Cyanophycin has also been heterologously produced in a variety of host organisms to a remarkable level, over 50% of the host's dry mass, and has potential for a variety of green industrial applications. In this review, we summarize the progression of cyanophycin research, with an emphasis on recent structural studies of enzymes in the cyanophycin biosynthetic pathway. These include several unexpected revelations that show cyanophycin synthetase to be a very cool, multi-functional macromolecular machine.


Subject(s)
Bacterial Proteins , Cyanobacteria , Humans , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Peptide Synthases/metabolism , Dipeptides/chemistry
3.
Sci Rep ; 13(1): 8314, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221236

ABSTRACT

Cyanophycin is a bacterial biopolymer used for storage of fixed nitrogen. It is composed of a backbone of L-aspartate residues with L-arginines attached to each of their side chains. Cyanophycin is produced by cyanophycin synthetase 1 (CphA1) using Arg, Asp and ATP, and is degraded in two steps. First, cyanophycinase breaks down the backbone peptide bonds, releasing ß-Asp-Arg dipeptides. Then, these dipeptides are broken down into free Asp and Arg by enzymes with isoaspartyl dipeptidase activity. Two bacterial enzymes are known to possess promiscuous isoaspartyl dipeptidase activity: isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA). We performed a bioinformatic analysis to investigate whether genes for cyanophycin metabolism enzymes cluster together or are spread around the microbial genomes. Many genomes showed incomplete contingents of known cyanophycin metabolizing genes, with different patterns in various bacterial clades. Cyanophycin synthetase and cyanophycinase are usually clustered together when recognizable genes for each are found within a genome. Cyanophycinase and isoaspartyl dipeptidase genes typically cluster within genomes lacking cphA1. About one-third of genomes with genes for CphA1, cyanophycinase and IaaA show these genes clustered together, while the proportion is around one-sixth for CphA1, cyanophycinase and IadA. We used X-ray crystallography and biochemical studies to characterize an IadA and an IaaA from two such clusters, in Leucothrix mucor and Roseivivax halodurans, respectively. The enzymes retained their promiscuous nature, showing that being associated with cyanophycin-related genes did not make them specific for ß-Asp-Arg dipeptides derived from cyanophycin degradation.


Subject(s)
Aminopeptidases , Computational Biology , Dipeptides , Ligases
4.
Protein Sci ; 32(7): e4685, 2023 07.
Article in English | MEDLINE | ID: mdl-37222490

ABSTRACT

Cyanophycin is a natural polymer composed of a poly-aspartate backbone with arginine attached to each of the aspartate sidechains. Produced by a wide range of bacteria, which mainly use it as a store of fixed nitrogen, it has many promising industrial applications. Cyanophycin can be synthesized from the amino acids Asp and Arg by the widespread cyanophycin synthetase 1 (CphA1), or from the dipeptide ß-Asp-Arg by the cyanobacterial enzyme cyanophycin synthetase 2 (CphA2). CphA2 enzymes display a range of oligomeric states, from dimers to dodecamers. Recently, the crystal structure of a CphA2 dimer was solved but could not be obtained in complex with substrate. Here, we report cryo-EM structures of the hexameric CphA2 from Stanieria sp. at ~2.8 Å resolution, both with and without ATP analog and cyanophycin. The structures show a two-fold symmetrical, trimer-of-dimers hexameric architecture, and substrate-binding interactions that are similar to those of CphA1. Mutagenesis experiments demonstrate the importance of several conserved substrate-binding residues. We also find that a Q416A/R528G double mutation prevents hexamer formation and use this double mutant to show that hexamerization augments the rate of cyanophycin synthesis. Together, these results increase our mechanistic understanding of how an interesting green polymer is biosynthesized.


Subject(s)
Cyanobacteria , Peptide Synthases , Peptide Synthases/chemistry , Aspartic Acid , Bacterial Proteins/chemistry
5.
Proc Natl Acad Sci U S A ; 120(8): e2216547120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36800389

ABSTRACT

Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into ß-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity. Two unrelated enzymes with this activity, isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA) have been shown to degrade ß-Asp-Arg dipeptides, but bacteria which encode cyanophycin-metabolizing genes can lack iaaA and iadA genes. In this study, we investigate a previously uncharacterized enzyme whose gene can cluster with cyanophycin-metabolizing genes. This enzyme, which we name cyanophycin dipeptide hydrolase (CphZ), is specific for dipeptides derived from cyanophycin degradation. Accordingly, a co-complex structure of CphZ and ß-Asp-Arg shows that CphZ, unlike IadA or IaaA, recognizes all portions of its ß-Asp-Arg substrate. Bioinformatic analyses showed that CphZ is found in very many proteobacteria and is homologous to an uncharacterized protein encoded in the "arginine/ornithine transport" (aot) operon of many pseudomonas species, including Pseudomonas aeruginosa. In vitro assays show that AotO is indeed a CphZ, and in cellulo growth experiments show that this enzyme and the aot operon allow P. aeruginosa to take up and use ß-Asp-Arg as a sole carbon and nitrogen source. Together the results establish the novel, highly specific enzyme subfamily of CphZs, suggesting that cyanophycin is potentially used by a much wider range of bacteria than previously appreciated.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/metabolism , Dipeptides/genetics , Dipeptides/metabolism , Biopolymers , Nitrogen/metabolism , Polymers
6.
G3 (Bethesda) ; 13(4)2023 04 11.
Article in English | MEDLINE | ID: mdl-36454095

ABSTRACT

Polyploidy, the phenomenon of having more than one copy of the genome in an organism, is common among haloarchaea. While providing short-term benefits for DNA repair, polyploidy is generally regarded as an "evolutionary trap" that by the notion of the Muller's ratchet will inevitably conclude in the species' decline or even extinction due to a gradual reduction in fitness. In most reported cases of polyploidy in archaea, the genetic state of the organism is considered as homoploidy i.e. all copies of the genome are identical. Here we demonstrate that while this is indeed the prevalent genetic status in the halophilic archaeon Haloferax volcanii, its close relative H. mediterranei maintains a prolonged heteroploidy state in a nonselective environment once a second allele is introduced. Moreover, a strong genetic linkage was observed between two distant loci in H. mediterranei indicating a low rate of homologous recombination while almost no such linkage was shown in H. volcanii indicating a high rate of recombination in the latter species. We suggest that H. volcanii escapes Muller's ratchet by means of an effective chromosome-equalizing gene-conversion mechanism facilitated by highly active homologous recombination, whereas H. mediterranei must elude the ratchet via a different, yet to be elucidated mechanism.


Subject(s)
Haloferax mediterranei , Haloferax volcanii , Humans , Haloferax volcanii/genetics , Haloferax mediterranei/genetics , DNA Repair , Homologous Recombination , Polyploidy
7.
Nutrients ; 14(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889831

ABSTRACT

The core microbiome, which refers to a set of consistent microbial features across populations, is of major interest in microbiome research and has been addressed by numerous studies. Understanding the core microbiome can help identify elements that lead to dysbiosis, and lead to treatments for microbiome-related health states. However, defining the core microbiome is a complex task at several levels. In this review, we consider the current state of core human microbiome research. We consider the knowledge that has been gained, the factors limiting our ability to achieve a reliable description of the core human microbiome, and the fields most likely to improve that ability. DNA sequencing technologies and the methods for analyzing metagenomics and amplicon data will most likely facilitate higher accuracy and resolution in describing the microbiome. However, more effort should be invested in characterizing the microbiome's interactions with its human host, including the immune system and nutrition. Other components of this holobiontic system should also be emphasized, such as fungi, protists, lower eukaryotes, viruses, and phages. Most importantly, a collaborative effort of experts in microbiology, nutrition, immunology, medicine, systems biology, bioinformatics, and machine learning is probably required to identify the traits of the core human microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Dysbiosis , Humans , Metagenomics/methods , Sequence Analysis, DNA
8.
Biochim Biophys Acta Gen Subj ; 1866(11): 130217, 2022 11.
Article in English | MEDLINE | ID: mdl-35905922

ABSTRACT

BACKGROUND: Cyanophycinases are serine protease family enzymes which are required for the metabolism of cyanophycin, the natural polymer multi-L-arginyl-poly(L-aspartic acid). Cyanophycinases degrade cyanophycin to ß-Asp-Arg dipeptides, which enables use of this important store of fixed nitrogen. METHODS: We used genetic code expansion to incorporate diaminopropionic acid into cyanophycinase in place of the active site serine, and determined a high-resolution structure of the covalent acyl-enzyme intermediate resulting from attack of cyanophycinase on a short cyanophycin segment. RESULTS: The structure indicates that cyanophycin dipeptide residues P1 and P1' bind shallow pockets adjacent to the catalytic residues. We observe many cyanophycinase - P1 dipeptide interactions in the co-complex structure. Calorimetry measurements show that at least two cyanophycin dipeptides are needed for high affinity binding to cyanophycinase. We also characterized a putative cyanophycinase which we found to be structurally very similar but that shows no activity and could not be activated by mutation of its active site. GENERAL SIGNIFICANCE: Despite its peptidic structure, cyanophycin is resistant to degradation by peptidases and other proteases. Our results help show how cyanophycinase can specifically bind and degrade this important polymer.


Subject(s)
Dipeptides , Peptide Hydrolases , Bacterial Proteins , Polymers
9.
Nat Commun ; 13(1): 3923, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798723

ABSTRACT

Cyanophycin is a nitrogen reserve biopolymer in many bacteria that has promising industrial applications. Made by cyanophycin synthetase 1 (CphA1), it has a poly-L-Asp backbone with L-Arg residues attached to each aspartate sidechain. CphA1s are thought to typically require existing segments of cyanophycin to act as primers for cyanophycin polymerization. In this study, we show that most CphA1s will not require exogenous primers and discover the surprising cause of primer independence: CphA1 can make minute quantities of cyanophycin without primer, and an unexpected, cryptic metallopeptidase-like active site in the N-terminal domain of many CphA1s digests these into primers, solving the problem of primer availability. We present co-complex cryo-EM structures, make mutations that transition CphA1s between primer dependence and independence, and demonstrate that primer dependence can be a limiting factor for cyanophycin production in heterologous hosts. In CphA1, domains with opposite catalytic activities combine into a remarkable, self-sufficient, biosynthetic nanomachine.


Subject(s)
Bacterial Proteins , Peptide Synthases , Bacterial Proteins/chemistry , Catalytic Domain , Peptide Synthases/metabolism , Plant Proteins/metabolism , Polymerization
10.
Nutrients ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35565847

ABSTRACT

Studies indicate that the intestinal microbiota influences general metabolic processes in humans, thereby modulating the risk of chronic diseases such as type 2 diabetes, allergy, cardiovascular disease, and colorectal cancer (CRC). Dietary factors are also directly related to chronic disease risk, and they affect the composition and function of the gut microbiota. Still, detailed knowledge on the relation between diet, the microbiota, and chronic disease risk is limited. The overarching aim of the HDHL-INTIMIC (INtesTInal MICrobiomics) knowledge platform is to foster studies on the microbiota, nutrition, and health by assembling available knowledge of the microbiota and of the other aspects (e.g., food science and metabolomics) that are relevant in the context of microbiome research. The goal is to make this information findable, accessible, interoperable, and reusable (FAIR) to the scientific community, and to share information with the various stakeholders. Through these efforts a network of transnational and multidisciplinary collaboration has emerged, which has contributed to further develop and increase the impact of microbiome research in human health. The roles of microbiota in early infancy, during ageing, and in subclinical and clinically manifested disease are identified as urgent areas of research in this knowledge platform.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Diet , Food , Humans , Intestines
11.
ACS Chem Biol ; 17(3): 670-679, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35179888

ABSTRACT

Cyanophycin is a biopolymer composed of long chains of ß-Asp-Arg. It is widespread in nature, being synthesized by many clades of bacteria, which use it as a cellular reservoir of nitrogen, carbon, and energy. Two enzymes are known to produce cyanophycin: cyanophycin synthetase 1 (CphA1), which builds cyanophycin from the amino acids Asp and Arg by alternating between two separate reactions for backbone extension and side chain modification, and cyanophycin synthetase 2 (CphA2), which polymerizes ß-Asp-Arg dipeptides. CphA2 is evolutionarily related to CphA1, but questions about CphA2's altered structure and function remain unresolved. Cyanophycin and related molecules have drawn interest as green biopolymers. Because it only has a single active site, CphA2 could be more useful than CphA1 for biotechnological applications seeking to produce modified cyanophycin. In this study, we report biochemical assays on nine cyanobacterial CphA2 enzymes and report the crystal structure of CphA2 from Gloeothece citriformis at 3.0 Å resolution. The structure reveals a homodimeric, three-domain architecture. One domain harbors the polymerization active site and the two other domains have structural roles. The structure and biochemical assays explain how CphA2 binds and polymerizes ß-Asp-Arg and highlights differences in in vitro oligomerization and activity between CphA2 enzymes. Using the structure and distinct activity profile as a guide, we introduced a single point mutation that converted Gloeothece citriformis CphA2 from a primer-dependent enzyme into a primer-independent enzyme.


Subject(s)
Cyanobacteria , Peptide Synthases , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Nucleotidyltransferases , Peptide Synthases/metabolism , Plant Proteins/metabolism
12.
Nat Commun ; 13(1): 548, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087027

ABSTRACT

Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase. Here, the pathway is reconstituted in vitro. The oxidase is shown to perform dehydrogenation of the thiazoline in the peptide intermediate while it is covalently attached to the NRPS, as the penultimate step in bacillamide D synthesis. Structural analysis of the oxidase reveals a dimeric, two-lobed architecture with a remnant RiPP recognition element and a dramatic wrapping loop. The oxidase forms a stable complex with the NRPS and dimerizes it. We visualized co-complexes of the oxidase bound to the elongation module of the NRPS using X-ray crystallography and cryo-EM. The three active sites (for adenylation, condensation/cyclization, and oxidation) form an elegant arc to facilitate substrate delivery. The structures enabled a proof-of-principle bioengineering experiment in which the BmdC oxidase domain is embedded into the NRPS.


Subject(s)
Oxidoreductases/chemistry , Oxidoreductases/metabolism , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Oxidoreductases/genetics , Peptide Synthases/genetics , Peptides , Thermoactinomyces/enzymology , Thermoactinomyces/genetics , Thermoactinomyces/metabolism , Thiazoles/metabolism , Tryptamines/biosynthesis
13.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34995923

ABSTRACT

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Drug Design , High-Throughput Screening Assays , Humans , Virus Replication/drug effects
14.
Blood Adv ; 6(2): 568-573, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34644375

ABSTRACT

We observed high rates of bloodstream infections (BSIs) following fecal microbiota transplantation (FMT) for graft-versus-host-disease (33 events in 22 patients). To trace the BSIs' origin, we applied a metagenomic bioinformatic pipeline screening donor and recipient stool samples for bacteremia-causing strains in 13 cases. Offending strains were not detected in FMT donations. Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii could be detected in stool samples before emerging in the blood. In this largest report of BSIs post-FMT, we present an approach that may be applicable for evaluating BSI origin following microbiota-based interventions. Our findings support FMT safety in immunocompromised patients but do not rule out FMT as an inducer of bacterial translocation.


Subject(s)
Bacteremia , Graft vs Host Disease , Microbiota , Bacteremia/etiology , Fecal Microbiota Transplantation , Humans , Immunocompromised Host
15.
Appl Environ Microbiol ; 88(4): e0168021, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34910563

ABSTRACT

The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30 to 40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named moLRP (marine-originated lactonase-related protein). This enzyme presented greater activity and stability at a broad range of temperatures and pH, tolerance to high salinity levels (up to 5 M NaCl), and higher durability in bacterial culture, compared to another PLL member, parathion hydrolase (PPH). The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment and can potentially serve as an effective QQ enzyme, inhibiting the QS process in Gram-negative bacteria involved in food spoilage. IMPORTANCE Our results emphasize the potential of sequence and structure-based identification of new QQ enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.


Subject(s)
Pseudomonas fluorescens , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Metagenome , Phylogeny , Pseudomonas/genetics , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Quorum Sensing
16.
Sci Rep ; 11(1): 17139, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429462

ABSTRACT

In human cells under stress conditions, misfolded polypeptides can form potentially cytotoxic insoluble aggregates. To eliminate aggregates, the HSP70 chaperone machinery extracts and resolubilizes polypeptides for triage to refolding or degradation. Yeast and bacterial chaperones of the small heat-shock protein (sHSP) family can bind substrates at early stages of misfolding, during the aggregation process. The co-aggregated sHSPs then facilitate downstream disaggregation by HSP70. Because it is unknown whether a human sHSP has this activity, we investigated the disaggregation role of human HSPB1. HSPB1 co-aggregated with unfolded protein substrates, firefly luciferase and mammalian lactate dehydrogenase. The co-aggregates formed with HSPB1 were smaller and more regularly shaped than those formed in its absence. Importantly, co-aggregation promoted the efficient disaggregation and refolding of the substrates, led by HSP70. HSPB1 itself was also extracted during disaggregation, and its homo-oligomerization ability was not required. Therefore, we propose that a human sHSP is an integral part of the chaperone network for protein disaggregation.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Humans , L-Lactate Dehydrogenase/metabolism , Luciferases, Firefly/metabolism , Molecular Chaperones/chemistry , Protein Multimerization , Protein Unfolding
17.
Nat Chem Biol ; 17(10): 1101-1110, 2021 10.
Article in English | MEDLINE | ID: mdl-34385683

ABSTRACT

Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the ß-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Models, Molecular , Peptide Synthases/genetics , Protein Conformation
18.
Nat Commun ; 12(1): 443, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500411

ABSTRACT

Exposure to antibiotics in the first days of life is thought to affect various physiological aspects of neonatal development. Here, we investigate the long-term impact of antibiotic treatment in the neonatal period and early childhood on child growth in an unselected birth cohort of 12,422 children born at full term. We find significant attenuation of weight and height gain during the first 6 years of life after neonatal antibiotic exposure in boys, but not in girls, after adjusting for potential confounders. In contrast, antibiotic use after the neonatal period but during the first 6 years of life is associated with significantly higher body mass index throughout the study period in both boys and girls. Neonatal antibiotic exposure is associated with significant differences in the gut microbiome, particularly in decreased abundance and diversity of fecal Bifidobacteria until 2 years of age. Finally, we demonstrate that fecal microbiota transplant from antibiotic-exposed children to germ-free male, but not female, mice results in significant growth impairment. Thus, we conclude that neonatal antibiotic exposure is associated with a long-term gut microbiome perturbation and may result in reduced growth in boys during the first six years of life while antibiotic use later in childhood is associated with increased body mass index.


Subject(s)
Anti-Bacterial Agents/adverse effects , Bacterial Infections/drug therapy , Gastrointestinal Microbiome/drug effects , Growth Disorders/chemically induced , Animals , Body Height/drug effects , Body Height/physiology , Body Mass Index , Body Weight/drug effects , Body Weight/physiology , Child , Child, Preschool , Disease Models, Animal , Fecal Microbiota Transplantation , Feces/microbiology , Female , Follow-Up Studies , Gastrointestinal Microbiome/physiology , Germ-Free Life , Growth Disorders/microbiology , Growth Disorders/physiopathology , Humans , Infant, Newborn , Intestinal Mucosa/microbiology , Male , Mice , Pregnancy , Risk Factors , Sex Factors
19.
EMBO J ; 39(18): e104081, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32500941

ABSTRACT

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Subject(s)
Data Mining , Databases, Nucleic Acid , Ribulose-Bisphosphate Carboxylase , Isoenzymes/classification , Isoenzymes/genetics , Ribulose-Bisphosphate Carboxylase/classification , Ribulose-Bisphosphate Carboxylase/genetics
20.
Environ Microbiol Rep ; 11(4): 598-604, 2019 08.
Article in English | MEDLINE | ID: mdl-31125500

ABSTRACT

Marine cyanobacteria are important contributors to primary production in the ocean and their viruses (cyanophages) affect the ocean microbial communities. Despite reports of lysogeny in marine cyanobacteria, a genome sequence of such temperate cyanophages remains unknown although genomic analysis indicate potential for lysogeny in certain marine cyanophages. Using assemblies from Red Sea and Tara Oceans metagenomes, we recovered genomes of a novel uncultured marine cyanophage lineage, which contain, in addition to common cyanophage genes, a phycobilisome degradation protein NblA, an integrase and a split DNA polymerase. The DNA polymerase forms a monophyletic clade with a DNA polymerase from a genomic island in Synechococcus WH8016. The island contains a relic prophage that does not resemble any previously reported cyanophage but shares several genes with the newly identified cyanophages reported here. Metagenomic recruitment indicates that the novel cyanophages are widespread, albeit at low abundance. Here, we describe a novel potentially lysogenic cyanophage family, their abundance and distribution in the marine environment.


Subject(s)
Bacteriophages/genetics , Lysogeny/genetics , Prophages/genetics , Seawater/virology , Synechococcus/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Base Sequence , Genome, Viral , Genomic Islands/genetics , Metagenome , Oceans and Seas , Phylogeny , Prophages/classification , Prophages/isolation & purification , Synechococcus/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...