Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 78(3): 737-752, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30796467

ABSTRACT

Class B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation. We explored the impacts of biosolids or synthetic fertilizer in combination with traditional (conventional) or conservation tillage on soil bacterial communities. Bacterial communities were characterized from fresh biosolids, biosolid aggregates embedded in soil, and soil after a second application of biosolids using high-throughput amplicon sequencing. Biosolid application significantly affected bacterial communities, even 4 years after their application. Bacteria in the families Clostridiaceae, Norcardiaceae, Anaerolinaceae, Dietziaceae, and Planococcaceae were more abundant in fresh biosolids, biosolid aggregates, and soils treated with biosolids than in synthetically fertilized soils. Taxa identified as Turcibacter, Dietzia, Clostridiaceae, and Anaerolineaceae were highly abundant in biosolid aggregates in the soil and likely originated from the biosolids. In contrast, Oxalobacteriaceae, Streptomyceteaceae, Janthinobacterium, Pseudomonas, Kribbella, and Bacillus were rare in the fresh biosolids, but relatively abundant in biosolid aggregates in the soil, and probably originated from the soil to colonize the substrate. However, tillage had relatively minor effects on bacterial communities, with only a small number of taxa differing in relative abundance between traditional and conventional tillage. Although biosolid-associated bacteria persisted in soil, potentially pathogenic taxa were extremely rare and no toxin genes for key groups (Salmonella, Clostridium) were detectable, suggesting that although fecal contamination was apparent via indicator taxa, pathogen populations had declined to low levels. Thus, biosolid amendments had profound effects on soil bacterial communities both by introducing gut- or digester-derived bacteria and by enriching potentially beneficial indigenous soil populations.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Triticum/microbiology , Bacteria/classification , Bacteria/genetics , Fertilizers/analysis , Phylogeny , Soil/chemistry , Triticum/growth & development , Washington
2.
Sci Rep ; 7(1): 7723, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798390

ABSTRACT

The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R2 > 0.77). Sediment loss from the site ranged from 118 g m-2 for the 20-24Apr 2012 wind event to 2925 g m-2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

3.
Sci Rep ; 6: 35984, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782159

ABSTRACT

Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

4.
J Environ Sci Health B ; 38(1): 37-48, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12602822

ABSTRACT

Application of herbicides in autumn is of interest to land managers who seek to reduce the number of field operations during spring in the northern Corn Belt. A limited number of herbicides, however, posses the physical characteristics that are required to minimize loss from soil over winter. This study examined the fate of one of these herbicides, metolachlor, during three consecutive winters (1994-1995, 1995-1996, and 1996-1997) near Morris, MN. Metolachlor was applied to the top 5 cm of a clay loam that was packed into a 1.8-m long plastic pipe. The pipe was then set inside a larger diameter 1.8-m long plastic pipe that was buried vertically in the field. The gap between the pipes was insulated along the sides and sealed at the top; this configuration allowed collection of leachate and extraction of the smaller diameter pipe while the field soil was frozen. The experimental design was replicated thrice with sample date (date that the smaller diameter pipes were extracted from the field) as the main treatment. Pipes were extracted from the field at least twice during winter and sectioned into 2 cm or larger increments. The soil contained within these sections was then analyzed for metolachlor. Downward movement of metolachlor occurred in the soil profile during the autumn, but only in 1995. This movement was likely caused by exclusion during pore ice formation as the soil froze. At the time of complete soil thaw in spring, the majority of metolachlor was still detected in the zone of application (0-5 cm depth). Some metolachlor, however, was detected 1 to 3 cm below the zone of application in all three years. Downward movement during thaw was due primarily to infiltration of snowmelt and rain. Metolachlor was most vulnerable to degradation during spring, but some loss occurred in autumn prior to freeze-up. This study suggests that autumn-applied metolachlor moves little in a repacked clay loam profile during winter. Further studies are warranted in evaluating movement under a range of soil physical properties and management practices.


Subject(s)
Acetamides/analysis , Herbicides/analysis , Soil Pollutants/analysis , Zea mays/chemistry , Acetamides/chemistry , Acetamides/metabolism , Adsorption , Climate , Environmental Monitoring , Herbicides/chemistry , Herbicides/metabolism , Seasons , Soil Pollutants/metabolism , United States , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...