Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172777, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38670384

ABSTRACT

Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.

2.
Front Environ Sci ; 11: 1-20, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37841559

ABSTRACT

Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.

3.
Limnol Oceanogr Lett ; 8(1): 190-211, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37539375

ABSTRACT

Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.

4.
Front Environ Sci ; 11: 1-28, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37475839

ABSTRACT

There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.

5.
Front Environ Sci ; 11: 1-20, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37234950

ABSTRACT

Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl2, and MgCl2). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na+, Mg2+ and Ca2+ respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl2 and MgCl2. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (p<0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems.

6.
Nat Rev Earth Environ ; 4: 770-784, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38515734

ABSTRACT

Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.

7.
Water (Basel) ; 15(22): 1-22, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38313692

ABSTRACT

Anthropogenic salt inputs have impacted many streams in the U.S. for over a century. Urban stream salinity is often chronically elevated and punctuated by episodic salinization events, which can last hours to days after snowstorms and the application of road salt. Here, we investigated the impacts of freshwater salinization on total dissolved nitrogen (TDN) and NO3-/NO2- concentrations and fluxes across time in urban watersheds in the Baltimore-Washington D.C. metropolitan area of the Chesapeake Bay region. Episodic salinization from road salt applications and snowmelt quickly mobilized TDN in streams likely through soil ion exchange, hydrologic flushing, and other biogeochemical processes. Previous experimental work from other studies has shown that salinization can mobilize nitrogen from sediments, but less work has investigated this phenomenon with high-frequency sensors and targeted monitoring during road salt events. We found that urban streams exhibited elevated concentrations and fluxes of TDN, NO3-/NO2-, and specific conductance that rapidly peaked during and after winter road salt events, and then rapidly declined afterwards. We observed plateaus in TDN concentrations in the ranges of the highest specific conductance values (between 1000 and 2000 µS/cm) caused by road salt events. Plateaus in TDN concentrations beyond a certain threshold of specific conductance values suggested source limitation of TDN in watersheds (at the highest ranges in chloride concentrations and ranges); salts were likely extracting nitrogen from soils and streams through ion exchange in soils and sediments, ion pairing in soils and waters, and sodium dispersion of soils to a certain threshold level. When watershed transport was compared across land use, including a forested reference watershed, there was a positive relationship between Cl- loads and NO3-/NO2- loads. This relationship occurred across all sites regardless of land use, which suggests that the mass transport of Cl- and NO3-/NO2- are likely influenced by similar factors such as soil ion exchange, ion pairing, sodium dispersion of soils, hydrologic flushing, and biogeochemical processes. Freshwater salinization has the potential to alter the magnitude and timing of total dissolved nitrogen delivery to receiving waters during winter months following road salt applications, and further work should investigate the seasonal relationships of N transport with salinization in urban watersheds.

8.
Freshw Sci ; 41(3): 420-441, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36213200

ABSTRACT

We investigate impacts of Freshwater Salinization Syndrome (FSS) on mobilization of salts, nutrients, and metals in urban streams and stormwater BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic U.S. and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show: (1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g., similar to the way concentrations increase during other soil disturbance activities); (2) sharp declines in pH (acidification) in response to road salt applications due to mobilization of H+ from soil exchange sites by Na+; (3) sharp increases in organic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications likely due to lysing cells and/or changes in solubility; (4) significant retention (~30-40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; (5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients (N, P), and trace metals (Cu, Sr) from stormwater BMPs and restored streams in response to FSS; (6) downstream increasing loads of Cl-, SO4 2-, Br-, F-, and I- along flowpaths through urban streams, and P release from urban stormwater BMPs in response to salinization, and (7) a significant annual reduction (> 50%) in Na+ concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compared our original results to published metrics of contaminant retention and release across a broad range of stormwater management BMPs from North America and Europe. Overall, urban streams and stormwater management BMPs consistently retain Na+ and Cl- but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater management BMPs. Reducing diverse 'chemical cocktails' of contaminants mobilized by freshwater salinization is now a priority for effectively and holistically restoring urban waters.

SELECTION OF CITATIONS
SEARCH DETAIL
...