Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2401831121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875147

ABSTRACT

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.


Subject(s)
Bacterial Proteins , Penicillin-Binding Proteins , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Penicillin-Binding Proteins/metabolism , Penicillin-Binding Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan Glycosyltransferase/genetics
2.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38328058

ABSTRACT

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.

3.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-38021169

ABSTRACT

Microtubules are essential components of eukaryotic cells. Myriad proteins associate with microtubules to facilitate the organization and operation of microtubule arrays. Various M icrotubule A ssociated P roteins (MAPs) assist the assembly and function of mitotic spindles and interphase arrays. Nine MAP65 genes exist in the genome of the acentrosomal model plant, Arabidopsis thaliana, and the function of majority of these proteins is unclear. To address this knowledge gap, we demonstrate the localization of A. thaliana MAP65-6 and MAP65-7 fusion proteins expressed from native promoters in interphase cells of developing A. thaliana seedlings. Analyses of these fusion proteins co-expressed with alpha-tubulin 6 reporters indicate that MAP65-6 and MAP65-7 bind a subset of interphase microtubules. Co-expression of GFP: MAP65-6 with mCherry: MAP65-2 from native promoters in A. thaliana showed overlapping localization patterns on interphase microtubule bundles. Collectively, these data suggested that MAP65-2 , -6, and -7 bind cortical microtubule bundles in plant interphase microtubule arrays.

4.
Plant Physiol ; 192(4): 2687-2702, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37096683

ABSTRACT

Light, temperature, water, and nutrient availability influence how plants grow to maximize access to resources. Axial growth, the linear extension of tissues by coordinated axial cell expansion, plays a central role in these adaptive morphological responses. Using Arabidopsis (Arabidopsis thaliana) hypocotyl cells to explore axial growth control mechanisms, we investigated WAVE-DAMPENED2-LIKE4 (WDL4), an auxin-induced, microtubule-associated protein and member of the larger WDL gene family shown to modulate hypocotyl growth under changing environmental conditions. Loss-of-function wdl4 seedlings exhibited a hyper-elongation phenotype under light conditions, continuing to elongate when wild-type Col-0 hypocotyls arrested and reaching 150% to 200% of wild-type length before shoot emergence. wdl4 seedling hypocotyls showed dramatic hyper-elongation (500%) in response to temperature elevation, indicating an important role in morphological adaptation to environmental cues. WDL4 was associated with microtubules under both light and dark growth conditions, and no evidence was found for altered microtubule array patterning in loss-of-function wdl4 mutants under various conditions. Examination of hormone responses showed altered sensitivity to ethylene and evidence for changes in the spatial distribution of an auxin-dependent transcriptional reporter. Our data provide evidence that WDL4 regulates hypocotyl cell elongation without substantial changes to microtubule array patterning, suggesting an unconventional role in axial growth control.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hypocotyl , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Seedlings/metabolism , Indoleacetic Acids/metabolism
5.
Mol Biol Cell ; 34(4): ar30, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36790918

ABSTRACT

Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/ß as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/ß interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/ß increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/ß have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/ß spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal-containing spindle assembly factors.


Subject(s)
Karyopherins , alpha Karyopherins , alpha Karyopherins/metabolism , Karyopherins/metabolism , Microtubules/metabolism , Kinesins/metabolism , Protein Binding/genetics , beta Karyopherins/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism
6.
Methods Mol Biol ; 2415: 47-59, 2022.
Article in English | MEDLINE | ID: mdl-34972945

ABSTRACT

Flowering plants evolved away from creating centrosomes or conventional microtubule organizing centers. Therein, plants have posed a long-standing challenge to many of the conventional ideas for mitotic spindle construction and the process of chromosome segregation. The Arabidopsis seedling has emerged as a leading model for plant cell biological studies of the cytoskeleton and vesicle trafficking. Here we describe methods for creating a reusable chamber for mitotic studies in both seedling root and shoot cells with instruction for best practices with conventional microscopic techniques.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Chromosome Segregation , Microtubules , Mitosis , Seedlings/genetics , Spindle Apparatus
7.
Mol Microbiol ; 115(6): 1152-1169, 2021 06.
Article in English | MEDLINE | ID: mdl-33269494

ABSTRACT

Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid-shaped Streptococcus pneumoniae (Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examined Spn cells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D-SIM (structured-illumination microscopy). Labeling with fluorescent D-amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin-binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading-edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA-marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced "nodes" of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.


Subject(s)
Cell Division/physiology , Peptidoglycan/biosynthesis , Streptococcus pneumoniae/metabolism , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Fluorescent Dyes , Penicillin-Binding Proteins/metabolism , Peptidyl Transferases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development
8.
Plant Physiol ; 182(2): 892-907, 2020 02.
Article in English | MEDLINE | ID: mdl-31767691

ABSTRACT

Auxin plays a central role in controlling plant cell growth and morphogenesis. Application of auxin to light-grown seedlings elicits both axial growth and transverse patterning of the cortical microtubule cytoskeleton in hypocotyl cells. Microtubules respond to exogenous auxin within 5 min, although repatterning of the array does not initiate until 30 min after application and is complete by 2 h. To examine the requirements for auxin-induced microtubule array patterning, we used an Arabidopsis (Arabidopsis thaliana) double auxin f-box (afb) receptor mutant, afb4-8 afb5-5, that responds to conventional auxin (indole-3-acetic acid) but has a strongly diminished response to the auxin analog, picloram. We show that 5 µm picloram induces immediate changes to microtubule density and later transverse microtubule patterning in wild-type plants, but does not cause microtubule array reorganization in the afb4-8 afb5-5 mutant. Additionally, a dominant mutant (axr2-1) for the auxin coreceptor AUXIN RESPONSIVE2 (AXR2) was strongly suppressed for auxin-induced microtubule array reorganization, providing additional evidence that auxin functions through a transcriptional pathway for transverse patterning. We observed that brassinosteroid application mimicked the auxin response, showing both early and late microtubule array effects, and induced transverse patterning in the axr2-1 mutant. Application of auxin to the brassinosteroid synthesis mutant, diminuto1, induced transverse array patterning but did not produce significant axial growth. Thus, exogenous auxin induces transverse microtubule patterning through the TRANSPORT INHIBITOR 1/AUXIN F-BOX (TIR1/AFB) transcriptional pathway and can act independently of brassinosteroids.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Microtubules/drug effects , Receptors, Cell Surface/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassinosteroids/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Hypocotyl/drug effects , Hypocotyl/growth & development , Indoleacetic Acids/pharmacology , Microtubules/genetics , Microtubules/metabolism , Mutation , Picloram/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Seedlings/drug effects , Seedlings/metabolism , Signal Transduction/drug effects
9.
Plant Physiol ; 181(1): 9-11, 2019 09.
Article in English | MEDLINE | ID: mdl-31467140
10.
Proc Natl Acad Sci U S A ; 116(8): 3211-3220, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718427

ABSTRACT

Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.


Subject(s)
Bacterial Proteins/genetics , Membrane Proteins/genetics , Penicillin-Binding Proteins/genetics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Cell Division/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/ultrastructure , Cytoskeleton/genetics , Cytoskeleton/ultrastructure , Escherichia coli/genetics , GTP Phosphohydrolases/genetics , Humans , Microscopy, Fluorescence , Peptidoglycan/biosynthesis , Peptidoglycan/genetics , Pneumococcal Infections/genetics , Streptococcus pneumoniae/pathogenicity , Streptococcus pneumoniae/ultrastructure
11.
Microscopy (Oxf) ; 68(1): 37-44, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30295787

ABSTRACT

The advent of super-resolution techniques in biological microscopy has opened new frontiers for exploring the molecular distribution of proteins and small molecules in cells. Improvements in optical design and innovations in the approaches for the collection of fluorescence emission have produced substantial gains in signal from chemical labels and fluorescent proteins. Structuring the illumination to elicit fluorescence from specific or even random patterns allows the extraction of higher order spatial frequencies from specimens labeled with conventional probes. Application of this approach to plant systems for super-resolution imaging has been relatively slow owing in large part to aberrations incurred when imaging through the plant cell wall. In this brief review, we address the use of two prominent methods for generating super-resolution images in living plant specimens and discuss future directions for gaining better access to these techniques.


Subject(s)
Arabidopsis/ultrastructure , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Optical Imaging/methods , Plant Cells/ultrastructure
12.
Plant Physiol ; 178(4): 1551-1567, 2018 12.
Article in English | MEDLINE | ID: mdl-30327382

ABSTRACT

Acentrosomal plant microtubule arrays form patterns at the cell cortex that influence cellular morphogenesis by templating the deposition of cell wall materials, but the molecular basis by which the microtubules form the cortical array patterns remains largely unknown. Loss of the Arabidopsis (Arabidopsis thaliana) microtubule-associated protein, CYTOPLASMIC LINKER ASSOCIATED PROTEIN (AtCLASP), results in cellular growth anisotropy defects in hypocotyl cells. We examined the microtubule array patterning in atclasp-1 null mutants and discovered a significant defect in the timing of transitions between array patterns but no substantive defect in the array patterns per se. Detailed analysis and computational modeling of the microtubule dynamics in two atclasp-1 fluorescent tubulin marker lines revealed marker-dependent effects on depolymerization and catastrophe frequency predicted to alter the steady-state microtubule population. Quantitative in vivo analysis of the underlying microtubule array architecture showed that AtCLASP is required to maintain the number of growing microtubule plus ends during transitions between array patterns. We propose that AtCLASP plays a critical role in cellular morphogenesis through actions on new microtubules that facilitate array transitions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Hypocotyl/cytology , Hypocotyl/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Microtubule-Associated Proteins/genetics , Microtubules/drug effects , Microtubules/genetics , Mutation , Plants, Genetically Modified
13.
Plant Physiol ; 178(2): 684-698, 2018 10.
Article in English | MEDLINE | ID: mdl-30154175

ABSTRACT

The growth properties of individual cells within a tissue determine plant morphology, and the organization of the cytoskeleton, particularly the microtubule arrays, determines cellular growth properties. We investigated the mechanisms governing the formation of transverse microtubule array patterns in axially growing Arabidopsis (Arabidopsis thaliana) epidermal hypocotyl cells. Using quantitative imaging approaches, we mapped the transition of the cortical microtubule arrays into a transverse coaligned pattern after induction with auxin and gibberellic acid. Hormone induction led to an early loss of microtubule plus end density and a rotation toward oblique patterns. Beginning 30 min after induction, transverse microtubules appeared at the cell's midzone concurrently with the loss of longitudinal polymers, eventually progressing apically and basally to remodel the array pattern. Based on the timing and known hormone-signaling pathways, we tested the hypothesis that the later events require de novo gene expression and, thus, constitute a level of genetic control over transverse patterning. We found that the presence of the translation inhibitor cycloheximide (CHX) resulted in a selective and reversible loss of transverse patterns that were replaced with radial-like pinwheel arrays exhibiting a split bipolar architecture centered at the cell's midzone. Experiments using hormone induction and CHX revealed that pinwheel arrays occur when transverse microtubules increase at the midzone but longitudinal microtubules in the split bipolar architecture are not suppressed. We propose that a key regulatory mechanism for creating the transverse microtubule coalignment in axially growing hypocotyls involves the expression of a CHX-sensitive factor that acts to suppress the nucleation of the longitudinally oriented polymers.


Subject(s)
Arabidopsis/metabolism , Cycloheximide/pharmacology , Microtubules/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Arabidopsis/drug effects , Arabidopsis/ultrastructure , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Gibberellins/metabolism , Hypocotyl/drug effects , Hypocotyl/metabolism , Hypocotyl/ultrastructure , Indoleacetic Acids/metabolism , Microtubules/drug effects , Microtubules/ultrastructure
15.
Plant Physiol ; 176(1): 307-325, 2018 01.
Article in English | MEDLINE | ID: mdl-28894021

ABSTRACT

Microtubules at the plant cell cortex influence cell shape by patterning the deposition of cell wall materials. The elongated cells of the hypocotyl create a variety of microtubule array patterns with differing degrees of polymer coalignment and orientation to the cell's growth axis. To gain insight into the mechanisms driving array organization, we investigated the underlying microtubule array architecture in light-grown epidermal cells with explicit reference to array pattern. We discovered that all nontransverse patterns share a common underlying array architecture, having a core unimodal peak of coaligned microtubules in a split bipolarized arrangement. The growing microtubule plus ends extend toward the cell's apex and base with a region of antiparallel microtubule overlap at the cell's midzone. This core coalignment continuously shifts between ±30° from the cell's longitudinal growth axis, forming a continuum of longitudinal and oblique arrays. Transverse arrays exhibit the same unimodal core coalignment but form local domains of microtubules polymerizing in the same direction rather than a split bipolarized architecture. Quantitative imaging experiments and analysis of katanin mutants showed that the longitudinal arrays are created from microtubules originating on the outer periclinal cell face, pointing to a cell-directed, rather than self-organizing, mechanism for specifying the major array pattern classes in the hypocotyl cell.


Subject(s)
Arabidopsis/metabolism , Hypocotyl/cytology , Hypocotyl/metabolism , Microtubules/metabolism , Pattern Recognition, Automated , Arabidopsis Proteins/metabolism , Green Fluorescent Proteins/metabolism , Mutation/genetics , Time Factors , Tubulin/metabolism
16.
Curr Biol ; 27(4): R150-R152, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28222294

ABSTRACT

Construction of the cell plate during plant cell division requires the precise insertion of materials around the circumferentially growing phragmoplast. New work shows that two kinesin-4 motor proteins act to shorten the domain of overlapping microtubules at the phragmoplast perimeter, limiting the site of material deposition.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinesis , Kinesins , Microtubules
17.
Curr Biol ; 25(11): 1509-14, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25981788

ABSTRACT

Ran is a small GTP binding protein that was originally identified as a regulator of nucleocytoplasmic transport [1] and subsequently found to be important for spindle formation [2-5]. In mitosis, a gradient of Ran-GTP emanates from chromatin and diminishes toward spindle poles [6]. Ran-GTP promotes spindle self-organization through the release of importin-bound spindle assembly factors (SAFs), which stimulate microtubule (MT) nucleation and organization and regulate MT dynamics [7-9]. Although many SAFs are non-motile MT-associated proteins, such as NuMA, TPX2, and HURP [7, 10-12], Ran also controls motor proteins, including Kid and HSET/XCTK2 [13, 14]. The Kinesin-14 XCKT2 is important for spindle assembly and pole organization [15-20], and Ran-GTP is proposed to promote XCKT2 MT crosslinking activity by releasing importin α/ß from a bipartite nuclear localization signal (NLS) located in the tail domain [14]. Here, we show that the Ran-GTP gradient spatially regulates XCTK2 within the spindle. A flattened Ran-GTP gradient blocked the ability of excess XCTK2 to stimulate bipolar spindle assembly and resulted in XCTK2-mediated bundling of free MTs. These effects required the XCTK2 tail, which promoted the motility of XCTK2 within the spindle independent of the Ran-GTP gradient. In addition, the turnover kinetics of XCTK2 were spatially controlled: they were faster near the poles relative to the chromatin, but not with a mutant XCTK2 that cannot bind to importin α/ß. Our results support a model in which the Ran-GTP gradient spatially coordinates motor localization with motility to ensure efficient spindle formation.


Subject(s)
Kinesins/metabolism , Spindle Apparatus/metabolism , Xenopus Proteins/metabolism , ran GTP-Binding Protein/metabolism , Animals , Cell Line , Guanosine Triphosphate/metabolism , Karyopherins/metabolism , Spodoptera , Xenopus
18.
Mol Microbiol ; 94(1): 21-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25099088

ABSTRACT

The relative localization patterns of class B penicillin-binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side-wall-like) peptidoglycan (PG) synthesis, respectively, in the mid-cell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse-experiments with fluorescent D-amino acids (FDAAs) were performed in wild-type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centres of constricting septa in mid-to-late divisional cells resolved by high-resolution 3D-SIM microscopy. Dual-protein and protein-fluorescent vancomycin 2D and 3D-SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centres of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodelling.


Subject(s)
Cell Division , Penicillin-Binding Proteins/metabolism , Peptidoglycan/biosynthesis , Streptococcus pneumoniae/cytology , Penicillin-Binding Proteins/genetics , Protein Transport , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
19.
Curr Biol ; 23(24): 2491-9, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24291095

ABSTRACT

BACKGROUND: Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood. RESULTS: Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor for MCAK and show that MCAK in solution exists in a closed conformation mediated by an interaction between the C-terminal domain (CT) and the neck. Using fluorescence lifetime imaging (FLIM) we show that MCAK bound to microtubule ends is closed relative to MCAK associated with the microtubule lattice. Aurora B phosphorylation at S196 in the neck opens MCAK conformation and diminishes the interaction between the CT and the neck. Using FLIM and TIRF imaging, we find that changes in MCAK conformation are associated with a decrease in MCAK affinity for the microtubule. CONCLUSIONS: Unlike motile kinesins, which are open when doing work, the high-affinity binding state for microtubule-depolymerizing kinesins is in a closed conformation. Phosphorylation switches MCAK conformation, which inhibits its ability to interact with microtubules and reduces its microtubule depolymerization activity. This work shows that the conformational model proposed for regulating kinesin activity is not universal and that microtubule-depolymerizing kinesins utilize a distinct conformational mode to regulate affinity for the microtubule, thus controlling their catalytic efficiency. Furthermore, our work provides a mechanism by which the robust microtubule depolymerization activity of kinesin-13s can be rapidly modulated to control cellular microtubule dynamics.


Subject(s)
Aurora Kinase B/physiology , Kinesins/physiology , Microtubules/metabolism , Animals , Aurora Kinase B/chemistry , Aurora Kinase B/metabolism , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Humans , Kinesins/chemistry , Kinesins/metabolism , Phosphorylation , Protein Structure, Tertiary , Protein Transport
20.
Mol Microbiol ; 90(5): 939-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24118410

ABSTRACT

Bacterial cell shapes are manifestations of programs carried out by multi-protein machines that synthesize and remodel the resilient peptidoglycan (PG) mesh and other polymers surrounding cells. GpsB protein is conserved in low-GC Gram-positive bacteria and is not essential in rod-shaped Bacillus subtilis, where it plays a role in shuttling penicillin-binding proteins (PBPs) between septal and side-wall sites of PG synthesis. In contrast, we report here that GpsB is essential in ellipsoid-shaped, ovococcal Streptococcus pneumoniae (pneumococcus), and depletion of GpsB leads to formation of elongated, enlarged cells containing unsegregated nucleoids and multiple, unconstricted rings of fluorescent-vancomycin staining, and eventual lysis. These phenotypes are similar to those caused by selective inhibition of Pbp2x by methicillin that prevents septal PG synthesis. Dual-protein 2D and 3D-SIM (structured illumination) immunofluorescence microscopy (IFM) showed that GpsB and FtsZ have overlapping, but not identical, patterns of localization during cell division and that multiple, unconstricted rings of division proteins FtsZ, Pbp2x, Pbp1a and MreC are in elongated cells depleted of GpsB. These patterns suggest that GpsB, like Pbp2x, mediates septal ring closure. This first dual-protein 3D-SIM IFM analysis also revealed separate positioning of Pbp2x and Pbp1a in constricting septa, consistent with two separable PG synthesis machines.


Subject(s)
Bacterial Proteins/physiology , Peptidoglycan/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/metabolism , Virulence Factors/physiology , Bacterial Proteins/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Gene Deletion , Imaging, Three-Dimensional , Methicillin/pharmacology , Microscopy, Fluorescence , Penicillin-Binding Proteins/physiology , Peptidyl Transferases/physiology , Phenotype , Protein Transport , Streptococcus pneumoniae/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...