Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067693

ABSTRACT

Although 2D MoS2 alone shows excellent gas-sensing performance, it is prone to stacking when used as the sensitive layer, resulting in insufficient contact with the target gas and lower sensitivity. To solve this, a 2D-MoS2/1D-CuPc heterojunction was prepared with different weight ratios of MoS2 nanosheets to CuPc micro-nanowires, and its room-temperature gas-sensing properties were studied. The response of the 2D-MoS2/1D-CuPc heterojunction to a target gas was related to the weight ratio of MoS2 to CuPc. When the weight ratio of MoS2 to CuPc was 20:7 (7-CM), the gas sensitivity of MoS2/CuPc composites was the best. Compared with the pure MoS2 sensor, the responses of 7-CM to 1000 ppm formaldehyde (CH2O), acetone (C3H6O), ethanol (C2H6O), and 98% RH increased by 122.7, 734.6, 1639.8, and 440.5, respectively. The response of the heterojunction toward C2H6O was twice that of C3H6O and 13 times that of CH2O. In addition, the response time of all sensors was less than 60 s, and the recovery time was less than 10 s. These results provide an experimental reference for the development of high-performance MoS2-based gas sensors.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36558338

ABSTRACT

Grinding-assisted liquid-phase exfoliation is a widely used method for the preparation of two-dimensional nanomaterials. In this study, N-methylpyrrolidone and acetonitrile, two common grinding solvents, were used during the liquid-phase exfoliation for the preparation of MoS2 nanosheets. The morphology and structure of MoS2 nanosheets were analyzed via scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The effects of grinding solvents on the gas-sensing performance of the MoS2 nanosheets were investigated for the first time. The results show that the sensitivities of MoS2 nanosheet exfoliation with N-methylpyrrolidone were 2.4-, 1.4-, 1.9-, and 2.7-fold higher than exfoliation with acetonitrile in the presence of formaldehyde, acetone, and ethanol and 98% relative humidity, respectively. MoS2 nanosheet exfoliation with N-methylpyrrolidone also has fast response and recovery characteristics to 50-1000 ppm of CH2O. Accordingly, although N-methylpyrrolidone cannot be removed completely from the surface of MoS2, it has good gas sensitivity compared with other samples. Therefore, N-methylpyrrolidone is preferred for the preparation of gas-sensitive MoS2 nanosheets in grinding-assisted liquid-phase exfoliation. The results provide an experimental basis for the preparation of two-dimensional materials and their application in gas sensors.

3.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407223

ABSTRACT

Under the background of the Paris Agreement on reducing greenhouse gases, waste wools were converted into wool carbon fiber (WCF) and WCF-MoS2 composites by low-temperature catalytic hydrothermal carbonization. Their structures and gas-sensing performances were studied for the first time. Due to the existence of heterojunctions, the responses of the WCF-MoS2 composite to the five analytes were 3-400 times those of MoS2 and 2-11 times those of WCF. Interestingly, because of the N, P, and S elements contained in wools, the WCF prepared by the hydrothermal method was realized the doping of N, P, and S, which caused the sensing curves of WCF to have different shapes for different analytes. This characteristic was also well demonstrated by the WCF-MoS2 composite, which inspired us to realize the discriminative detection only by a single WCF-MoS2 sensor and image recognition technology. What's more, the WCF-MoS2 composite also showed a high sensitivity, a high selectivity, and a rapid response to NH3. The response time and the recovery time to 3 ppm NH3 were about 16 and 5 s, respectively. The detection of limit of WCF-MoS2 for NH3 was 19.1 ppb. This work provides a new idea for the development of sensors and the resource utilization of wool waste.

4.
Nanomaterials (Basel) ; 7(9)2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28927021

ABSTRACT

This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag-SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag-SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. An optimal temperature of 90 °C was determined, and the Ag-SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in terms of response, repeatability, stability and response/recovery characteristics, which were superior to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag-SnO2/rGO sensor was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created at the interfaces between SnO2 and rGO. This work indicates that the Ag-SnO2/rGO nanocomposite is a good candidate for constructing a low-temperature acetylene sensor.

5.
Sensors (Basel) ; 16(6)2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27338394

ABSTRACT

Despite tremendous potential and urgent demand in high-response low-cost gas identification, the development of gas identification based on a metal oxide semiconductor nanowire/nanobelt remains limited by fabrication complexity and redundant signals. Researchers have shown a multisensor-array strategy with "one key to one lock" configuration. Here, we describe a new strategy to create high-response room-temperature gas identification by employing gas as dielectric. This enables gas discrimination down to the part per billion (ppb) level only based on one pristine single nanobelt transistor, with the excellent average Mahalanobis distance (MD) as high as 35 at the linear discriminant analysis (LDA) space. The single device realizes the selective recognition function of electronic nose. The effect of the gas dielectric on the response of the multiple field-effect parameters is discussed by the comparative investigation of gas and solid-dielectric devices and the studies on trap density changes in the conductive channel. The current work opens up exciting opportunities for room-temperature gas recognition based on the pristine single device.

7.
Nanotoxicology ; 6(3): 241-8, 2012 May.
Article in English | MEDLINE | ID: mdl-21495879

ABSTRACT

The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.


Subject(s)
Garlic/drug effects , Mutagens/toxicity , Nanoparticles/toxicity , Zinc Oxide/toxicity , Chromosome Aberrations/chemically induced , Dose-Response Relationship, Drug , Garlic/genetics , Garlic/growth & development , Microscopy, Electron, Transmission , Mitotic Index , Mutagens/chemistry , Nanoparticles/chemistry , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Surface Properties , Time Factors , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...