Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neuromolecular Med ; 18(1): 81-90, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26573920

ABSTRACT

Hereditary sensory and autonomic neuropathy 1 (HSAN1) is an autosomal dominant disorder that can be caused by variants in SPTLC1 or SPTLC2, encoding subunits of serine palmitoyl-CoA transferase. Disease variants alter the enzyme's substrate specificity and lead to accumulation of neurotoxic 1-deoxysphingolipids. We describe two families with autosomal dominant HSAN1C caused by a new variant in SPTLC2, c.547C>T, p.(Arg183Trp). The variant changed a conserved amino acid and was not found in public variant databases. All patients had a relatively mild progressive distal sensory impairment, with onset after age 50. Small fibers were affected early, leading to abnormalities on quantitative sensory testing. Sural biopsy revealed a severe chronic axonal neuropathy with subtotal loss of myelinated axons, relatively preserved number of non-myelinated fibers and no signs for regeneration. Skin biopsy with PGP9.5 labeling showed lack of intraepidermal nerve endings early in the disease. Motor manifestations developed later in the disease course, but there was no evidence of autonomic involvement. Patients had elevated serum 1-deoxysphingolipids, and the variant protein produced elevated amounts of 1-deoxysphingolipids in vitro, which proved the pathogenicity of the variant. Our results expand the genetic spectrum of HSAN1C and provide further detail about the clinical characteristics. Sequencing of SPTLC2 should be considered in all patients presenting with mild late-onset sensory-predominant small or large fiber neuropathy.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Late Onset Disorders/genetics , Mutation, Missense , Serine C-Palmitoyltransferase/genetics , Age of Onset , Aged , Amino Acid Sequence , Amino Acid Substitution , Axons/pathology , Female , Finland , Genes, Dominant , Germany , Haplotypes , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree , Serine C-Palmitoyltransferase/deficiency , Serine C-Palmitoyltransferase/metabolism , Small Fiber Neuropathy/genetics , Sphingolipids/blood , Substrate Specificity
2.
Neurol Genet ; 1(1): e1, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27066538

ABSTRACT

OBJECTIVE: We describe the phenotype consistent with axonal Charcot-Marie-Tooth disease type 2 (CMT2) in 4 families with a c.197G>T (p.(Gly66Val)) variant in CHCHD10. METHODS: We sequenced the CHCHD10 gene in a cohort of 107 families with CMT2 of unknown etiology. The patients were characterized by clinical examination and electroneuromyography. Muscle MRI and biopsy of the muscle or nerve were performed in selected cases. Neuropathologic autopsy was performed in 1 case. RESULTS: The c.197G>T variant in CHCHD10 was found in 6 families, 4 of which included multiple individuals available for detailed clinical study. Variants in this gene have recently been associated with amyotrophic lateral sclerosis-frontotemporal dementia, mitochondrial myopathy, or spinal muscular atrophy Jokela type (SMAJ), but not with CMT2. Our patients had a late-onset distal axonal neuropathy with motor predominance, progressing to involve sensory nerves. Neurophysiologic and neuropathologic studies confirmed the diagnosis of sensorimotor axonal neuropathy with no loss of anterior horn neurons. Muscle biopsies showed occasional cytochrome c oxidase-negative fibers, combined with small amounts of mitochondrial DNA deletions. CONCLUSIONS: CHCHD10 c.197G>T (p.(Gly66Val)) is a cause of sensorimotor axonal neuropathy. This gene should be considered in patients presenting with a pure CMT2 phenotype, particularly when motor symptoms predominate.

SELECTION OF CITATIONS
SEARCH DETAIL
...