Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38193284

ABSTRACT

The sensitivity and fabrication process of the detection platform are important for developing viral disease diagnosis. Recently, the outbreak of SARS-CoV-2 compelled us to develop a new detection platform to control such diseases in the future. We present an electrochemical-based assay that employs the unique properties of gold nanoparticles (AuNPs) deposited on 3D carboxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOTAc) nanorods for specific and sensitive detection of SARS-CoV-2 spike protein (S1). The 3D-shaped PEDOTAc nanorods offer an ample surface area for receptor immobilization grown on indium-tin oxide surfaces through transfer-printing technology. Characterization via electrochemical, fluorescence, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques confirmed the structural and morphological properties of the AuNPs-decorated PEDOTAc. In contrast to antibody-based assays, our platform employs ACE2 receptors for spike protein binding. Differential pulse voltammetry records current responses, showing linear sensitivity from 100 ng to 10 pg/mL of S1. In addition, the SARS-CoV-2 assay (CoVPNs) also exhibited excellent selectivity against nonspecific target proteins (H9N2, IL-6, and Escherichia coli). Furthermore, the developed surface maintained good stability for up to 7 consecutive days without losing performance. The results provide new insight into effective 3D conductive nanostructure formation, which is promising in the development of versatile sensory devices.

2.
Front Chem ; 10: 955260, 2022.
Article in English | MEDLINE | ID: mdl-35991598

ABSTRACT

The challenge of infectious diseases remains a critical concern to the global public health. Recently, it is common to encounter touch-screen electronic devices everywhere to access services. The surface of such devices may easily get contaminated by an infected person, which leads to transmission of infectious diseases between individuals. Moreover, the challenge is complicated by surgical infections from implantable biomedical devices. Such problems can be minimized by the use of long-term active antimicrobial surface coatings. We present herein the preparation of novel electroactive antimicrobial surface coatings through the covalent attachment of the biguanide moiety onto 3,4-ethylenedioxythiophene (EDOT). The biguanide-functionalized EDOT (EDOT-BG) was thus electropolymerized on different substrates to give the corresponding poly(EDOT-BG) polymer. The poly(EDOT-BG) polymer showed an excellent bactericidal efficiency (∼92% bacterial death) and excellent biocompatibility with mammalian cells. Furthermore, the antimicrobial EDOT-BG was electro-copolymerized with antifouling tetra ethylene glycol functionalized-EDOT (EDOT-EG4) to give a multifunctional poly(EDOT-EG4-co-EDOT-BG) copolymer. The poly(EDOT-EG4-co-EDOT-BG) copolymer showed excellent resistance to protein adsorption and mammalian/bacterial cell binding without losing its bactericidal efficiency. These novel materials can be applied to domestic and bioelectronic devices to minimize infectious diseases.

3.
Anal Chem ; 94(21): 7584-7593, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35588463

ABSTRACT

In this study, we examined the influence of functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructures decorated on the channel layer of an organic electrochemical transistor (OECT) for the detection of sweat cortisol, an adrenocorticosteroid stress hormone. The OECT device featured a bilayer channel confined by a PEDOT:polystyrenesulfonate (PSS) underlayer and a nanostructure-decorated upper layer engineered from the monomers EDOT-COOH and EDOT-EG3 through template-free electrochemical polymerization. This molecular design allowed antibody conjugation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysulfosuccinimide coupling through the carboxylic acid side chain, with EDOT-EG3 known to minimize nonspecific binding of biomolecules. We also engineered an OECT device having a channel area without any nanostructures to gain insight into the effect of the nanostructures on cortisol sensing. Our new nanostructure-embedded OECT device facilitated real-time detection of cortisol at concentrations ranging from 1 fg/mL to 1 µg/mL with a detection limit of 0.0088 fg/mL with good linearity (R2 = 0.9566), in addition to excellent selectivity toward cortisol among other structurally similar interfering compounds and high stability and reproducibility. With its rapid response for the detection of 100 ng/mL cortisol-spiked artificial sweat, this nanostructure-decorated OECT device has potential clinical practicality and utility in wearable sensors for future healthcare applications.


Subject(s)
Nanostructures , Sweat , Bridged Bicyclo Compounds, Heterocyclic , Hydrocortisone , Poly A , Polymers , Reproducibility of Results
4.
Adv Sci (Weinh) ; 9(14): e2105853, 2022 05.
Article in English | MEDLINE | ID: mdl-35486030

ABSTRACT

Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.


Subject(s)
Extracellular Vesicles , Sarcoma, Ewing , Carcinogenesis/genetics , Click Chemistry , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Genes, ras , Humans , Lipids , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...