Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
BMC Med ; 22(1): 368, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237921

ABSTRACT

BACKGROUND: The American Heart Association recently introduced a novel cardiovascular health (CVH) metric, Life's Essential 8 (LE8), for health promotion. However, the relationship between LE8 and cancer mortality risk remains uncertain. METHODS: We investigated 17,076 participants from US National Health and Nutrition Examination Survey (US NHANES) and 272,727 participants from UK Biobank, all free of cancer at baseline. The CVH score, based on LE8 metrics, incorporates four health behaviors (diet, physical activity, smoking, and sleep) and four health factors (body mass index, lipid, blood glucose, and blood pressure). Self-reported questionnaires assessed health behaviors. Primary outcomes were mortality rates for total cancer and its subtypes. The association between CVH score (continuous and categorical variable) and outcomes was examined using Cox model with adjustments. Cancer subtypes-related polygenic risk score (PRS) was constructed to evaluate its interactions with CVH on cancer death risk. RESULTS: Over 141,526 person-years in US NHANES, 424 cancer-related deaths occurred, and in UK Biobank, 8,872 cancer deaths were documented during 3,690,893 person-years. High CVH was associated with reduced overall cancer mortality compared to low CVH (HR 0.58, 95% CI 0.37-0.91 in US NHANES; 0.51, 0.46-0.57 in UK Biobank). Each one-standard deviation increase in CVH score was linked to a 19% decrease in cancer mortality (HR: 0.81; 95% CI: 0.73-0.91) in US NHANES and a 19% decrease (HR: 0.81; 95% CI: 0.79-0.83) in UK Biobank. Adhering to ideal CVH was linearly associated with decreased risks of death from lung, bladder, liver, kidney, esophageal, breast, colorectal, pancreatic, and gastric cancers in UK Biobank. Furthermore, integrating genetic data revealed individuals with low PRS and high CVH exhibited the lowest mortality from eight cancers (HRs ranged from 0.36 to 0.57) compared to those with high PRS and low CVH. No significant modification of the association between CVH and mortality risk for eight cancers by genetic predisposition was observed. Subgroup analyses showed a more pronounced protective association for overall cancer mortality among younger participants and those with lower socio-economic status. CONCLUSIONS: Maintaining optimal CVH is associated with a substantial reduction in the risk of overall cancer mortality. Adherence to ideal CVH correlates linearly with decreased mortality risk across multiple cancer subtypes. Individuals with both ideal CVH and high genetic predisposition demonstrated significant health benefits. These findings support adopting ideal CVH as an intervention strategy to mitigate cancer mortality risk and promote healthy aging.


Subject(s)
Cardiovascular Diseases , Neoplasms , Nutrition Surveys , Humans , United States/epidemiology , United Kingdom/epidemiology , Male , Female , Middle Aged , Neoplasms/mortality , Cardiovascular Diseases/mortality , Adult , Cohort Studies , Aged , Biological Specimen Banks , Risk Factors , UK Biobank
2.
Cardiovasc Diabetol ; 23(1): 233, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965574

ABSTRACT

BACKGROUND: Artificial sweeteners are widely popular worldwide as substitutes for sugar or caloric sweeteners, but there are still several important unknowns and controversies regarding their associations with cardiovascular disease (CVD). We aimed to extensively assess the association and subgroup variability between artificial sweeteners and CVD and CVD mortality in the UK Biobank cohort, and further investigate the modification effects of genetic susceptibility and the mediation role of type 2 diabetes mellitus (T2DM). METHODS: This study included 133,285 participants in the UK Biobank who were free of CVD and diabetes at recruitment. Artificial sweetener intake was obtained from repeated 24-hour diet recalls. Cox proportional hazard models were used to estimate HRs. Genetic predisposition was estimated using the polygenic risk score (PRS). Furthermore, time-dependent mediation was performed. RESULTS: In our study, artificial sweetener intake (each teaspoon increase) was significantly associated with an increased risk of incident overall CVD (HR1.012, 95%CI: 1.008,1.017), coronary artery disease (CAD) (HR: 1.018, 95%CI: 1.001,1.035), peripheral arterial disease (PAD) (HR: 1.035, 95%CI: 1.010,1.061), and marginally significantly associated with heart failure (HF) risk (HR: 1.018, 95%CI: 0.999,1.038). In stratified analyses, non-whites were at greater risk of incident overall CVD from artificial sweetener. People with no obesity (BMI < 30 kg/m2) also tended to be at greater risk of incident CVD from artificial sweetener, although the obesity interaction is not significant. Meanwhile, the CVD risk associated with artificial sweeteners is independent of genetic susceptibility, and no significant interaction exists between genetic susceptibility and artificial sweeteners in terms of either additive or multiplicative effects. Furthermore, our study revealed that the relationship between artificial sweetener intake and overall CVD is significantly mediated, in large part, by prior T2DM (proportion of indirect effect: 70.0%). In specific CVD subtypes (CAD, PAD, and HF), the proportion of indirect effects ranges from 68.2 to 79.9%. CONCLUSIONS: Our findings suggest significant or marginally significant associations between artificial sweeteners and CVD and its subtypes (CAD, PAD, and HF). The associations are independent of genetic predisposition and are mediated primarily by T2DM. Therefore, the large-scale application of artificial sweeteners should be prudent, and the responses of individuals with different characteristics to artificial sweeteners should be better characterized to guide consumers' artificial sweeteners consumption behavior.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Non-Nutritive Sweeteners , Adult , Aged , Female , Humans , Male , Middle Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Heart Disease Risk Factors , Incidence , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , UK Biobank , United Kingdom/epidemiology , Non-Nutritive Sweeteners/adverse effects
3.
Circ Res ; 135(1): 222-260, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900855

ABSTRACT

Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.


Subject(s)
Arachidonic Acid , Cardiovascular Diseases , Humans , Arachidonic Acid/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Signal Transduction , Metabolic Diseases/metabolism , Metabolic Diseases/therapy , Cardiometabolic Risk Factors , Obesity/metabolism , Obesity/therapy
4.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
5.
EBioMedicine ; 100: 104964, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181703

ABSTRACT

BACKGROUND: Quantitative nuclear magnetic resonance (NMR) metabolomics techniques provide detailed measurements of lipoprotein particle concentration. Metabolic dysfunction often represents a cluster of conditions, including dyslipidaemia, hypertension, and diabetes, that increase the risk of cardiovascular diseases (CVDs). However, the causal relationship between lipid profiles and blood pressure (BP) remains unclear. We performed a Mendelian Randomisation (MR) study to disentangle and prioritize the potential causal effects of major lipids, lipoprotein particles, and circulating metabolites on BP and pulse pressure (PP). METHODS: We employed single-nucleotide polymorphisms (SNPs) associated with major lipids, lipoprotein particles, and other metabolites from the UK Biobank as instrumental variables. Summary-level data for BP and PP were obtained from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Two-sample MR and MR Bayesian model averaging approaches (MR-BMA) were conducted to analyse and rank causal associations. FINDINGS: Genetically predicted TG was the most likely causal exposure among the major lipids to increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), with marginal inclusion probabilities (MIPs) of 0.993 and 0.847, respectively. Among the majority of lipoproteins and their containing lipids, including major lipids, genetically elevated TG in small high-density lipoproteins (S_HDL_TG) had the strongest association with the increase of SBP and DBP, with MIPs of 0.416 and 0.397, respectively. HDL cholesterol (HDL_C) and low-density lipoprotein cholesterol (LDL_C) were potential causal factors for PP elevation among the major lipids (MIP = 0.927 for HDL_C and MIP = 0.718 for LDL_C). Within the sub-lipoproteins, genetically predicted atherogenic lipoprotein particles (i.e., sub-very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and LDL particles) had the most likely causal impact on increasing PP. INTERPRETATION: This study provides genetic evidence for the causality of lipids on BP indicators. However, the effect size on SBP, DBP, and PP varies depending on the lipids' components and sizes. Understanding this potential relationship may inform the potential benefits of comprehensive management of lipid profiles for BP control. FUNDING: Key Research and Development Program of Hubei Province, Science and Technology Innovation Project of Huanggang Central Hospital of Yangtze University, the Hubei Industrial Technology Research Institute of Heart-Brain Diseases, and the Hubei Provincial Engineering Research Centre of Comprehensive Care for Heart-Brain Diseases.


Subject(s)
Brain Diseases , Lipoproteins , Adult , Humans , Blood Pressure/genetics , Triglycerides , Bayes Theorem , Lipoproteins/genetics , Cholesterol, LDL , Cholesterol, HDL , Mendelian Randomization Analysis , Risk Factors
6.
J Lipid Res ; 65(3): 100513, 2024 03.
Article in English | MEDLINE | ID: mdl-38295985

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Chromatin/genetics , Histone Demethylases/genetics , Inflammation/genetics , Lipids
7.
Med Oncol ; 41(1): 32, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150063

ABSTRACT

Prostate cancer is an epithelial malignant tumor occurring in the prostate and is the most common malignant tumor in the male genitourinary system. In recent years, the incidence of prostate cancer in China has shown a trend of sudden increase. The search for new and effective drugs to treat prostate cancer is therefore extremely important.The canonical Wnt/ß-catenin signaling pathway has been shown to be involved in the regulation of tumor proliferation, migration and differentiation. Activation of the canonical Wnt/ß-Catenin signaling pathway in the prostate has oncogenic effects. Drugs targeting the canonical Wnt/ß-catenin signaling pathway have great potential in the treatment of prostate cancer. In this study, we found that Gastrodin could significantly inhibit the proliferation of prostate cancer cell line PC3 and DU145. Oral administration Gastrodin could significantly inhibit the tumor growth of PC3 cells subcutaneously injected. Gastrodin has an inhibitory effect on canonical Wnt/ß-Catenin signaling pathway in Prostate cancer, and this inhibitory effect can be abolished by Wnt/ß-Catenin agonist LiCl. These findings raise the possibility that Gastrodin can be used in the treatment of Prostate cancer by targeting canonical Wnt/ß-Catenin signaling pathway.


Subject(s)
Carcinoma , Prostatic Neoplasms , Male , Humans , Wnt Signaling Pathway , Prostatic Neoplasms/drug therapy , Benzyl Alcohols/pharmacology , Cell Proliferation
8.
Front Cardiovasc Med ; 10: 1151575, 2023.
Article in English | MEDLINE | ID: mdl-37324618

ABSTRACT

Background: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, which poses huge disease burdens in China. A study was conducted to systematically analyze the recent prevalence trend of AF and age-related disparities in AF risk among the nationwide healthy check-up population. Method: We conducted a nationwide cross-sectional study involving 3,049,178 individuals ≥35 years from health check-up centers to explore the prevalence and trend of AF by age, sex, and region from 2012 to 2017. Additionally, we analyzed risk factors associated with AF among the overall population and different age groups via the Boruta algorithm, the LASSO regression, and the Logistic regression. Result: The age-, sex-. and regional-standardized prevalence of AF kept stable between 0.4%-0.45% among national physical examination individuals from 2012 to 2017. However, the prevalence of AF showed an undesirable upward trend in the 35-44-year age group (annual percentage changes (APC): 15.16 [95%CI: 6.42,24.62]). With increasing age, the risk of AF associated with the overweight or obesity gradually exceeds that associated with diabetes and hypertension. In addition to traditional leading risk factors such as age≥65 and coronary heart disease, elevated uric acid and impaired renal function were tightly correlated with AF in the population. Conclusion: The significant rise in the prevalence of AF in the 35-44 age group reminds us that in addition to the elderly (the high-risk group), younger people seem to be in more urgent need of attention. Age-related disparities in AF risk also exist. This updated information may provide references for the national prevention and control of AF.

9.
Exp Gerontol ; 178: 112202, 2023 07.
Article in English | MEDLINE | ID: mdl-37178875

ABSTRACT

Skin aging is a complex process involving intricate genetic and environmental factors. In this study, we performed a comprehensive analysis of the transcriptional regulatory landscape of skin aging in canines. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify aging-related gene modules. We subsequently validated the expression changes of these module genes in single-cell RNA sequencing (scRNA-seq) data of human aging skin. Notably, basal cell (BC), spinous cell (SC), mitotic cell (MC), and fibroblast (FB) were identified as the cell types with the most significant gene expression changes during aging. By integrating GENIE3 and RcisTarget, we constructed gene regulation networks (GRNs) for aging-related modules and identified core transcription factors (TFs) by intersecting significantly enriched TFs within the GRNs with hub TFs from WGCNA analysis, revealing key regulators of skin aging. Furthermore, we demonstrated the conserved role of CTCF and RAD21 in skin aging using an H2O2-stimulated cell aging model in HaCaT cells. Our findings provide new insights into the transcriptional regulatory landscape of skin aging and unveil potential targets for future intervention strategies against age-related skin disorders in both canines and humans.


Subject(s)
Skin Aging , Transcription Factors , Humans , Animals , Dogs , Transcription Factors/genetics , Skin Aging/genetics , Hydrogen Peroxide , Gene Expression Regulation , Gene Regulatory Networks , Gene Expression Profiling
10.
Obesity (Silver Spring) ; 31(6): 1584-1599, 2023 06.
Article in English | MEDLINE | ID: mdl-37203337

ABSTRACT

OBJECTIVE: Adipogenesis has been recognized as an attractive avenue for maintaining systemic homeostasis, with peroxisome proliferator-activated receptor γ (PPARγ) showing predominant roles in this process. This study aims to identify promising drug candidates by targeting PPARγ for adipogenesis-based metabolic homeostasis and to clarify the detailed mechanisms. METHODS: Molecular events contributing to adipogenesis were screened, which identified PPARγ as having the predominant role. Promising agents of adipogenesis agonism were screened using a PPARγ-based luciferase reporter assay. The functional capacity and molecular mechanisms of magnolol were intensively examined using 3T3-L1 preadipocytes and dietary models. RESULTS: This study found that F-box only protein 9 (FBXO9)-mediated lysine 11 (K11)-linked ubiquitination and proteasomal degradation of PPARγ are critically required during adipogenesis and systemic homeostasis. Notably, magnolol was identified as a potent adipogenesis activator by stabilizing PPARγ. The pharmacological mechanisms investigations clarified that magnolol directly binds to PPARγ and markedly interrupts its interaction with FBXO9, leading to a decline in K11-linked ubiquitination and proteasomal degradation of PPARγ. Clinically important, magnolol treatment significantly facilitates adipogenesis in vitro and in vivo. CONCLUSIONS: The downregulation of K11-linked ubiquitination of PPARγ caused by FBOX9 is essentially required for adipogenesis, while targeting PPARγ-FBXO9 interaction provides a new avenue for the therapy of adipogenesis-related metabolic disorder.


Subject(s)
Adipogenesis , F-Box Proteins , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Biphenyl Compounds/pharmacology , Homeostasis , 3T3-L1 Cells
11.
Front Endocrinol (Lausanne) ; 14: 1109673, 2023.
Article in English | MEDLINE | ID: mdl-37082131

ABSTRACT

Background and aims: Metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to substitute NAFLD in 2020. This new term highlights the systematic metabolic disturbances that accompany fatty liver. We evaluated the correlations between MAFLD and subclinical carotid atherosclerosis (SCA) based on a nationwide health examination population in China. Methods: We performed a nationwide cross-sectional population and a Beijing retrospective cohort from 2009 to 2017. SCA was defined as elevated carotid intima-media thickness. The multivariable logistic and Cox models were used to analyze the association between MAFLD and SCA. Results: 153,482 participants were included in the cross-sectional study. MAFLD was significantly associated with SCA in fully adjusted models, with an odds ratio of 1.66; 95% confidence interval (CI): 1.62-1.70. This association was consistent in the cohort, with a hazard ratio (HR) of 1.31. The association between baseline MAFLD and incident SCA increased with hepatic steatosis severity. Subgroup analysis showed an interaction between age and MAFLD, with a higher risk in younger groups (HR:1.67, 95% CI: 1.17-2.40). Conclusion: In this large cross-section and cohort study, MAFLD was significantly associated with the presence and development of SCA. Further, the risk was higher among MAFLD individuals with high hepatic steatosis index and young adults.


Subject(s)
Carotid Artery Diseases , Non-alcoholic Fatty Liver Disease , Young Adult , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Cross-Sectional Studies , Carotid Intima-Media Thickness , Cohort Studies , Retrospective Studies , China/epidemiology , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/etiology
12.
Atherosclerosis ; 372: 1-9, 2023 05.
Article in English | MEDLINE | ID: mdl-37004300

ABSTRACT

BACKGROUND AND AIMS: The distribution of lipoprotein(a) [Lp(a)] has not been well-studied in a large population in China. The relationship between Lp(a) and carotid atherosclerosis remains undefined. In this study, we aimed to investigate the distribution of Lp(a) levels and to assess their association with carotid arteriopathy in China. METHODS: In this cross-sectional study, 411,634 adults with Lp(a) measurements from 22 health check-up centers were used to investigate Lp(a) distribution in China. Among participants with Lp(a) data, carotid ultrasound was performed routinely at seven health check-up centers covering 75,305 subjects. Carotid intima-media thickness (cIMT) and carotid plaque were used as surrogate biomarkers of carotid arteriopathy. The multivariate logistic regression model was applied to evaluate the association of increased Lp(a) levels with carotid arteriopathy. RESULTS: The distribution of Lp(a) concentrations was right-skewed, with a median concentration of 10.60 mg/dL. The proportions of Lp(a) levels ≥30 mg/dL and ≥50 mg/dL were 16.75% and 7.10%, respectively. The median Lp(a) level was higher in females individuals in northern China, and increased with age. Spearman's analysis revealed weak correlations between the Lp(a) concentration as a continuous variable and other lipid profiles. The multiple logistic regression analysis showed that participants with Lp(a) levels ≥50 mg/dL had an increased risk of cIMT ≥1.0 mm (OR = 1.138, 95% CI, 1.071-1.208) and carotid plaque (OR = 1.296, 95% CI, 1.219-1.377) compared with those with Lp(a) levels <50 mg/dL. CONCLUSIONS: This is the first study of the Lp(a) distribution in a large population in China. Our findings revealed a positive association between elevated Lp(a) levels (≥50 mg/dL) and increased prevalence of carotid atherosclerosis, which implies an increased risk of cardiovascular disease in the future.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Adult , Female , Humans , Lipoprotein(a) , Carotid Intima-Media Thickness , Cross-Sectional Studies , East Asian People , Carotid Artery Diseases/epidemiology , Plaque, Atherosclerotic/complications , Risk Factors
13.
J Breath Res ; 17(3)2023 04 27.
Article in English | MEDLINE | ID: mdl-37040740

ABSTRACT

PM2.5is a well-known airborne hazard to cause various diseases. Evidence suggests that air pollution exposure contributes to the occurrence of pulmonary nodules. Pulmonary nodules detected on the computed tomography scans can be malignant or progress to malignant during follow-up. But the evidence of the association between PM2.5exposure and pulmonary nodules was limited. To examine potential associations of exposures to PM2.5and its major chemical constituents with the prevalence of pulmonary nodules. A total of 16 865 participants were investigated from eight physical examination centers in China from 2014 to 2017. The daily concentrations of PM2.5and its five components were estimated by high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants in China. The logistic regression and the quantile-based g-computation models were used to assess the single and mixture impact of air pollutant PM2.5and its components on the risk of pulmonary nodules, respectively. Each 1 mg m-3increase in PM2.5(OR 1.011 (95% CI: 1.007-1.014)) was positively associated with pulmonary nodules. Among five PM2.5components, in single-pollutant effect models, every 1µg m-3increase in organic matter (OM), black carbon (BC), and NO3-elevated the risk of pulmonary nodule prevalence by 1.040 (95% CI: 1.025-1.055), 1.314 (95% CI: 1.209-1.407) and 1.021 (95% CI: 1.007-1.035) fold, respectively. In mixture-pollutant effect models, the joint effect of every quintile increase in PM2.5components was 1.076 (95% CI: 1.023-1.133) fold. Notably, NO3-BC and OM contributed higher risks of pulmonary nodules than other PM2.5components. And the NO3-particles were identified to have the highest contribution. The impacts of PM2.5components on pulmonary nodules were consistent across gender and age.These findings provide important evidence for the positive correlation between exposure to PM2.5and pulmonary nodules in China and identify that NO3-particles have the highest contribution to the risk.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/adverse effects , Prevalence , Breath Tests , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , China/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis
14.
J Atheroscler Thromb ; 30(11): 1552-1567, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37032101

ABSTRACT

AIM: To date, PM2.5-associated vascular damage in metabolic abnormalities has remained controversial. We knew little about the vascular damage of PM2.5 constituents. Thus, this study aimed to investigate the relationship between long-term exposure to PM2.5 and its constituents and vascular damage in metabolic abnormalities. METHODS: A total of 124,387 participants with metabolic abnormalities (defined as at least one metabolic disorder, such as obesity, elevated blood pressure, elevated triglyceride level, elevated fasting glucose level, or low HDL cholesterol level) were recruited in this study from 11 representative centers in China between January 2011 and December 2017. PM2.5 and its constituents (black carbon [BC], organic matter [OM], sulfate [SO42-], nitrate [NO3-], and ammonium salts [NH4+]) were extracted. Elevated brachial-ankle pulse wave velocity (baPWV) (≥ 1,400 cm/s) and declined ankle-brachial index (ABI) (<0.9) indicated vascular damage. Multivariable logistic regression and Quantile g-Computation models were utilized to explore the impact on outcomes. RESULTS: Of the 124,387 participants (median age, 49 years), 87,870 (70.64%) were men. One-year lag exposure to PM2.5 and its constituents was significantly associated with vascular damage in single pollutant models. The adjusted odds ratios (OR) for each 1-µg/m3 increase in PM2.5 was 1.013 (95% CI, 1.012-1.015) and 1.031 (95% CI, 1.025-1.037) for elevated baPWV and decreased ABI, respectively. PM2.5 constituents were also associated with vascular damage in multi-pollutant models. Among the PM2.5 constituents, BC (47.17%), SO42- (33.59%), and NH4+ (19.23%) have the highest contribution to elevated baPWV and NO3- (47.89%) and BC (23.50%) to declined ABI. CONCLUSION: Chronic exposure to PM2.5 and PM2.5 constituents was related to vascular damage in the abnormal metabolic population in China. The heterogeneous contribution of different PM2.5 constituents to vessel bed damage is worthy of attention when developing targeted strategies.


Subject(s)
Air Pollutants , Environmental Pollutants , Male , Humans , Middle Aged , Female , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Ankle Brachial Index , Pulse Wave Analysis , China/epidemiology , Environmental Exposure/adverse effects
15.
Front Endocrinol (Lausanne) ; 14: 1115354, 2023.
Article in English | MEDLINE | ID: mdl-36909326

ABSTRACT

Background: The relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease (MAFLD) remains controversial. Additionally, little is known about the relationship between thyroid function parameters and MAFLD in the Chinese population. Methods: We conducted a retrospective cross-sectional study involving 177,540 individuals with thyroid function tests and MAFLD diagnosis from 2010-2018. The association between thyroid function parameters and MAFLD was evaluated on a continuous scale with restricted cubic spline (RCS) models and by the prior-defined centile categories with multivariable-adjusted logistic regression models. Thyroid function parameters included free triiodothyronine (FT3), free tetra-iodothyronine (FT4), and thyroid stimulating hormone (TSH). Additionally, fully adjusted RCS models stratified by sex, age, and location were studied. Results: In the RCS models, the risk of MAFLD increased with higher levels of FT3 when FT3 <5.58pmol/L, while the risk of MAFLD decreased with higher levels of FT3 when FT3 ≥5.58pmol/L (P nonlinearity <0.05). While RCS analysis suggested that the FT4 levels had a negative association with MAFLD (P nonlinearity <0.05), indicating an increase in FT4 levels was associated with a decreased risk of MAFLD. RCS analysis suggested an overall positive association between the concentration of TSH and MAFLD risk (P nonlinearity <0.05). The rising slope was sharper when the TSH concentration was less than 1.79uIU/mL, which indicated the association between TSH and MAFLD risk was tightly interrelated within this range. The multivariable logistic regression showed that populations in the 81st-95th centile had the highest risk of MAFLD among all centiles of FT3/TSH, with the 1st-5th centile as the reference category. Conclusions: Our study suggested nonlinear relationships between thyroid function parameters and MAFLD. Thyroid function parameters could be additional modifiable risk factors apart from the proven risk factors to steer new avenues regarding MAFLD prevention and treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thyroid Gland , Humans , Thyroid Gland/metabolism , Thyroxine/metabolism , Retrospective Studies , Cross-Sectional Studies , Thyrotropin/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
16.
Front Cardiovasc Med ; 10: 1130635, 2023.
Article in English | MEDLINE | ID: mdl-36998980

ABSTRACT

Background: Pathological cardiac hypertrophy is commonly resulted from sustained pressure overload and/or metabolic disorder and eventually leads to heart failure, lacking specific drugs in clinic. Here, we aimed to identify promising anti-hypertrophic drug(s) for heart failure and related metabolic disorders by using a luciferase reporter-based high-throughput screening. Methods: A screen of the FDA-approved compounds based on luciferase reporter was performed, with identified luteolin as a promising anti-hypertrophic drug. We systematically examined the therapeutic efficacy of luteolin on cardiac hypertrophy and heart failure in vitro and in vivo models. Transcriptome examination was performed to probe the molecular mechanisms of luteolin. Results: Among 2,570 compounds in the library, luteolin emerged as the most robust candidate against cardiomyocyte hypertrophy. Luteolin dose-dependently blocked phenylephrine-induced cardiomyocyte hypertrophy and showed extensive cardioprotective roles in cardiomyocytes as evidenced by transcriptomics. More importantly, gastric administration of luteolin effectively ameliorated pathological cardiac hypertrophy, fibrosis, metabolic disorder, and heart failure in mice. Cross analysis of large-scale transcriptomics and drug-target interacting investigations indicated that peroxisome proliferator activated receptor γ (PPARγ) was the direct target of luteolin in the setting of pathological cardiac hypertrophy and metabolic disorders. Luteolin can directly interact with PPARγ to inhibit its ubiquitination and subsequent proteasomal degradation. Furthermore, PPARγ inhibitor and PPARγ knockdown both prevented the protective effect of luteolin against phenylephrine-induced cardiomyocyte hypertrophy in vitro. Conclusion: Our data clearly supported that luteolin is a promising therapeutic compound for pathological cardiac hypertrophy and heart failure by directly targeting ubiquitin-proteasomal degradation of PPARγ and the related metabolic homeostasis.

17.
Chin Med ; 18(1): 30, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932412

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver (NAFLD) and its related metabolic syndrome have become major threats to human health, but there is still a need for effective and safe drugs to treat these conditions. Here we aimed to identify potential drug candidates for NAFLD and the underlying molecular mechanisms. METHODS: A drug repositioning strategy was used to screen an FDA-approved drug library with approximately 3000 compounds in an in vitro hepatocyte model of lipid accumulation, with honokiol identified as an effective anti-NAFLD candidate. We systematically examined the therapeutic effect of honokiol in NAFLD and metabolic syndrome in multiple in vitro and in vivo models. Transcriptomic examination and biotin-streptavidin binding assays were used to explore the underlying molecular mechanisms, confirmed by rescue experiments. RESULTS: Honokiol significantly inhibited metabolic syndrome and NAFLD progression as evidenced by improved hepatic steatosis, liver fibrosis, adipose inflammation, and insulin resistance. Mechanistically, the beneficial effects of honokiol were largely through AMPK activation. Rather than acting on the classical upstream regulators of AMPK, honokiol directly bound to the AMPKγ1 subunit to robustly activate AMPK signaling. Mutation of honokiol-binding sites of AMPKγ1 largely abolished the protective capacity of honokiol against NAFLD. CONCLUSION: These findings clearly demonstrate the beneficial effects of honokiol in multiple models and reveal a previously unappreciated signaling mechanism of honokiol in NAFLD and metabolic syndrome. This study also provides new insights into metabolic disease treatment by targeting AMPKγ1 subunit-mediated signaling activation.

18.
Int J Cardiol ; 378: 130-137, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36841290

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is the most common type of treated heart arrhythmia contributing to adverse cardiovascular events. The association between short-term air pollution exposure and AF episodes has been recognized. But the evidence of the association between long-term air pollution exposure and AF was limited, especially in developing countries. METHODS: We performed a nationwide cross-sectional study among 1,374,423 individuals aged ≥35 years from 13 health check-up centers. Using logistic regression models, we assessed the association between long-term exposure to single air pollution and AF prevalence, including particulate matter (PM2.5 and PM10), ozone (O3) and PM2.5 compositions, which were estimated by high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants for China. The quantile g-computation model was used to explore the joint effect of all exposures to air pollution and the contribution of an individual component to the mixture. RESULTS: In single-pollutant models, an increase of 10 µg/m3 in PM2.5 (OR 1.031[95%CI 1.010,1.053]) and PM10 (OR = 1.021 [95%CI 1.009,1.033]) was positively associated with AF prevalence. The stratified analyses revealed that these associations were significantly stronger in females, people <65 years old, and those with hypertension and diabetes. In the further exploration of the joint effect of PM2.5 compositions (OR 1.060 [95%CI 1.022,1.101]) per quintile increase in all five PM2.5 components), we found that PM2.5 sulfate contributed the most. CONCLUSIONS: These findings provide important evidence for the positive relationship between long-term exposure to air pollution and AF prevalence in China and identify sulfate particles of PM2.5 as having the highest contribution to the overall mixture effects among all PM2.5 chemical constituents.


Subject(s)
Air Pollutants , Air Pollution , Atrial Fibrillation , Female , Humans , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Cross-Sectional Studies , Prevalence , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , China/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Nitrogen Dioxide/adverse effects
19.
J Mol Med (Berl) ; 101(1-2): 101-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36792729

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Liver Cirrhosis/metabolism , Metabolic Syndrome/metabolism , Liver/metabolism
20.
Brain Res Bull ; 195: 37-46, 2023 04.
Article in English | MEDLINE | ID: mdl-36775042

ABSTRACT

BACKGROUND: Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS: Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS: Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION: Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Mice , Animals , Stroke/metabolism , AMP-Activated Protein Kinases , Brain Ischemia/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Ischemic Stroke/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Glucose/metabolism , Oxygen/pharmacology , Apoptosis , Infarction, Middle Cerebral Artery/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL