Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 236: 122880, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34635260

ABSTRACT

A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.


Subject(s)
Aptamers, Nucleotide , Metal-Organic Frameworks , Nanofibers , Marine Toxins , Microcystins , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL