Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(12): eadi9710, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517957

ABSTRACT

The ability to amplify, translate, and process small ionic potential fluctuations of neural processes directly at the recording site is essential to improve the performance of neural implants. Organic front-end analog electronics are ideal for this application, allowing for minimally invasive amplifiers owing to their tissue-like mechanical properties. Here, we demonstrate fully organic complementary circuits by pairing depletion- and enhancement-mode p- and n-type organic electrochemical transistors (OECTs). With precise geometry tuning and a vertical device architecture, we achieve overlapping output characteristics and integrate them into amplifiers with single neuronal dimensions (20 micrometers). Amplifiers with combined p- and n-OECTs result in voltage-to-voltage amplification with a gain of >30 decibels. We also leverage depletion and enhancement-mode p-OECTs with matching characteristics to demonstrate a differential recording capability with high common mode rejection rate (>60 decibels). Integrating OECT-based front-end amplifiers into a flexible shank form factor enables single-neuron recording in the mouse cortex with on-site filtering and amplification.

2.
Nat Commun ; 15(1): 533, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225257

ABSTRACT

Due to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-µm -diameter vertical stack. Leveraging the efficient motion of encapsulated cations inside this polymer stack and the opposite doping mechanisms of the constituent polymers, we demonstrate high current rectification ratios ([Formula: see text]) and fast switching speeds (230 µs). We integrate p-n organic electrochemical diodes with organic electrochemical transistors in the front-end pixel of a recording array. This configuration facilitates the access of organic electrochemical transistor output currents within a large network operating in the same electrolyte, while minimizing crosstalk from neighboring elements due to minimized reverse-biased leakage. Furthermore, we use these devices to fabricate time-division-multiplexed amplifier arrays. Lastly, we show that, when fabricated in a shank format, this technology enables the multiplexing of amplified local field potentials directly in the active recording pixel (26-µm diameter) in a minimally invasive form factor with shank cross-sectional dimensions of only 50×8 [Formula: see text].

3.
ACS Mater Au ; 3(3): 242-254, 2023 May 10.
Article in English | MEDLINE | ID: mdl-38089129

ABSTRACT

Organic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs. We demonstrate that the salt-cast devices present a 10-fold increase in transconductance and achieve at least one year-long stability, while the pristine devices degrade within four months of storage. The salt-added films show improved backbone planarity and greater charge delocalization, leading to higher electronic charge carrier mobility. These films show a distinctly porous morphology where the interconnectivity is affected by the salt type, responsible for OECT speed. The salt-based films display limited changes in morphology and show lower water uptake upon electrochemical doping, a possible reason for the improved device cycling stability. Our work provides a new and easy route to improve n-type OECT performance and stability, which can be adapted for other electrochemical devices with n-type films operating at the aqueous electrolyte interface.

4.
Proc Natl Acad Sci U S A ; 120(35): e2306272120, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37603750

ABSTRACT

Semiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance. An effective strategy to control polymer film swelling is to copolymerize glycolated repeat units with a fraction of monomers bearing alkyl side chains, although the microscopic mechanism that constrains swelling is unknown. Here we investigate, experimentally and computationally, a series of archetypal mixed transporting copolymers with varying ratios of glycolated and alkylated repeat units. Experimentally we observe that exchanging 10% of the glycol side chains for alkyl leads to significantly reduced film swelling and an increase in electrochemical stability. Through molecular dynamics simulation of the amorphous phase of the materials, we observe the formation of polymer networks mediated by alkyl side-chain interactions. When in the presence of water, the network becomes increasingly connected, counteracting the volumetric expansion of the polymer film.

5.
Nat Mater ; 22(3): 362-368, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36797383

ABSTRACT

Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.

6.
Adv Mater ; 34(39): e2204258, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35946142

ABSTRACT

Exchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid-state packing and polymer-electrolyte interactions being poorly understood. Presented here is a molecular dynamics (MD) force field for modeling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals. MD simulations, coupled with X-ray diffraction (XRD), show that alkoxylated polythiophenes will pack with a "tilted stack" and straight interdigitating side chains, whilst their glycolated counterpart will pack with a "deflected stack" and an s-bend side-chain configuration. MD simulations reveal water penetration pathways into the alkoxylated and glycolated crystals-through the π-stack and through the lamellar stack respectively. Finally, the two distinct ways triethylene glycol polymers can bind to cations are revealed, showing the formation of a metastable single bound state, or an energetically deep double bound state, both with a strong side-chain length dependence. The minimum energy pathways for the formation of the chelates are identified, showing the physical process through which cations can bind to one or two side chains of a glycolated polythiophene, with consequences for ion transport in bithiophene semiconductors.

7.
Adv Mater ; 34(22): e2105007, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34714562

ABSTRACT

Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.

8.
Sci Adv ; 7(50): eabl5068, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34890232

ABSTRACT

In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration.

9.
J Am Chem Soc ; 143(29): 11007-11018, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34192463

ABSTRACT

Novel p-type semiconducting polymers that can facilitate ion penetration, and operate in accumulation mode are much desired in bioelectronics. Glycol side chains have proven to be an efficient method to increase bulk electrochemical doping and optimize aqueous swelling. One early polymer which exemplifies these design approaches was p(g2T-TT), employing a bithiophene-co-thienothiophene backbone with glycol side chains in the 3,3' positions of the bithiophene repeat unit. In this paper, the analogous regioisomeric polymer, namely pgBTTT, was synthesized by relocating the glycol side chains position on the bithiophene unit of p(g2T-TT) from the 3,3' to the 4,4' positions and compared with the original p(g2T-TT). By changing the regio-positioning of the side chains, the planarizing effects of the S-O interactions were redistributed along the backbone, and the influence on the polymer's microstructure organization was investigated using grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. The newly designed pgBTTT exhibited lower backbone disorder, closer π-stacking, and higher scattering intensity in both the in-plane and out-of-plane GIWAXS measurements. The effect of the improved planarity of pgBTTT manifested as higher hole mobility (µ) of 3.44 ± 0.13 cm2 V-1 s-1. Scanning tunneling microscopy (STM) was in agreement with the GIWAXS measurements and demonstrated, for the first time, that glycol side chains can also facilitate intermolecular interdigitation analogous to that of pBTTT. Electrochemical quartz crystal microbalance with dissipation of energy (eQCM-D) measurements revealed that pgBTTT maintains a more rigid structure than p(g2T-TT) during doping, minimizing molecular packing disruption and maintaining higher hole mobility in operation mode.


Subject(s)
Electrochemical Techniques , Ethylenes/chemistry , Glycols/chemistry , Polymers/chemical synthesis , Thiophenes/chemical synthesis , Molecular Conformation , Polymers/chemistry , Stereoisomerism , Thiophenes/chemistry
10.
Adv Mater ; 32(37): e2002748, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32754923

ABSTRACT

A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [µC* ] and current retentions up to 98% over 700 electrochemical switching cycles are developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...