Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Breathe (Sheff) ; 19(3): 220269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37830099

ABSTRACT

Motor neurone disease/amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with no known cure, where death is usually secondary to progressive respiratory failure. Assisting people with ALS through their disease journey is complex and supported by clinics that provide comprehensive multidisciplinary care (MDC). This review aims to apply both a respiratory and a complexity lens to the key roles and areas of practice within the MDC model in ALS. Models of noninvasive ventilation care, and considerations in the provision of palliative therapy, respiratory support, and speech and language therapy are discussed. The impact on people living with ALS of both inequitable funding models and the complexity of clinical care decisions are illustrated using case vignettes. Considerations of the impact of emerging antisense and gene modifying therapies on MDC challenges are also highlighted. The review seeks to illustrate how MDC members contribute to collective decision-making in ALS, how the sum of the parts is greater than any individual care component or health professional, and that the MDC per se adds value to the person living with ALS. Through this approach we hope to support clinicians to navigate the space between what are minimum, guideline-driven, standards of care and what excellent, person-centred ALS care that fully embraces complexity could be. Educational aims: To highlight the complexities surrounding respiratory care in ALS.To alert clinicians to the risk that complexity of ALS care may modify the effectiveness of any specific, evidence-based therapy for ALS.To describe the importance of person-centred care and shared decision-making in optimising care in ALS.

2.
Sleep ; 46(12)2023 12 11.
Article in English | MEDLINE | ID: mdl-37691432

ABSTRACT

STUDY OBJECTIVES: Over 80% of people with tetraplegia have sleep-disordered breathing (SDB), but whether this is predominantly obstructive or central is unclear. This study aimed to estimate the prevalence of central sleep apnea (CSA) in tetraplegia and the contributions of central, obstructive, and hypopnea respiratory events to SDB summary indices in tetraplegia. METHODS: Research and clinical data from 606 individuals with tetraplegia and full overnight polysomnography were collated. The proportions of different respiratory event types were calculated; overall and for mild, moderate, and severe disease. The prevalence of Predominant CSA (Central Apnea Index [CAI] ≥ 5 and more central than obstructive apneas) and Any CSA (CAI ≥ 5) was estimated. Prevalence of sleep-related hypoventilation (SRH) was estimated in a clinical sub-cohort. RESULTS: Respiratory events were primarily hypopneas (71%), followed by obstructive (23%), central (4%), and mixed apneas (2%). As severity increased, the relative contribution of hypopneas and central apneas decreased, while that of obstructive apneas increased. The prevalence of Predominant CSA and Any CSA were 4.3% (26/606) and 8.4% (51/606) respectively. Being male, on opiates and having a high tetraplegic spinal cord injury were associated with CSA. SRH was identified in 26% (26/113) of the clinical sub-cohort. CONCLUSIONS: This is the largest study to characterize SDB in tetraplegia. It provides strong evidence that obstructive sleep apnea is the predominant SDB type; 9-18 times more prevalent than CSA. The prevalence of CSA was estimated to be 4%-8%, significantly lower than previously reported.


Subject(s)
Airway Obstruction , Dyssomnias , Sleep Apnea Syndromes , Sleep Apnea, Central , Sleep Apnea, Obstructive , Spinal Cord Injuries , Humans , Male , Female , Sleep Apnea, Central/complications , Sleep Apnea, Central/epidemiology , Retrospective Studies , Prevalence , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/epidemiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/epidemiology , Quadriplegia/complications , Quadriplegia/epidemiology , Hypoventilation
3.
Front Rehabil Sci ; 4: 1164628, 2023.
Article in English | MEDLINE | ID: mdl-37565183

ABSTRACT

Respiratory muscle weakness results in substantial discomfort, disability, and ultimately death in many neuromuscular diseases. Respiratory system impairment manifests as shallow breathing, poor cough and associated difficulty clearing mucus, respiratory tract infections, hypoventilation, sleep-disordered breathing, and chronic ventilatory failure. Ventilatory support (i.e., non-invasive ventilation) is an established and key treatment for the latter. As survival outcomes improve for people living with many neuromuscular diseases, there is a shift towards more proactive and preventative chronic disease multidisciplinary care models that aim to manage symptoms, improve morbidity, and reduce mortality. Clinical care guidelines typically recommend therapies to improve cough effectiveness and mobilise mucus, with the aim of averting acute respiratory compromise or respiratory tract infections. Moreover, preventing recurrent infective episodes may prevent secondary parenchymal pathology and further lung function decline. Regular use of techniques that augment lung volume has similarly been recommended (volume recruitment). It has been speculated that enhancing lung inflation in people with respiratory muscle weakness when well may improve respiratory system "flexibility", mitigate restrictive chest wall disease, and slow lung volume decline. Unfortunately, clinical care guidelines are based largely on clinical rationale and consensus opinion rather than level A evidence. This narrative review outlines the physiological changes that occur in people with neuromuscular disease and how these changes impact on breathing, cough, and respiratory tract infections. The biological rationale for lung volume recruitment is provided, and the clinical trials that examine the immediate, short-term, and longer-term outcomes of lung volume recruitment in paediatric and adult neuromuscular diseases are presented and the results synthesised.

4.
Ann Am Thorac Soc ; 20(10): 1445-1455, 2023 10.
Article in English | MEDLINE | ID: mdl-37390359

ABSTRACT

Rationale: Clinical care guidelines advise that lung volume recruitment (LVR) be performed routinely by people with neuromuscular disease (NMD) to maintain lung and chest wall flexibility and slow lung function decline. However, the evidence base is limited, and no randomized controlled trials of regular LVR in adults have been published. Objectives: To evaluate the effect of regular LVR on respiratory function and quality of life in adults with NMD. Methods: A randomized controlled trial with assessor blinding was conducted between September 2015 and May 2019. People (>14 years old) with NMD and vital capacity <80% predicted were eligible, stratified by disease subgroup (amyotrophic lateral sclerosis/motor neuron disease or other NMDs), and randomized to 3 months of twice-daily LVR or breathing exercises. The primary outcome was change in maximum insufflation capacity (MIC) from baseline to 3 months, analyzed using a linear mixed model approach. Results: Seventy-six participants (47% woman; median age, 57 [31-68] years; mean baseline vital capacity, 40 ± 18% predicted) were randomized (LVR, n = 37). Seventy-three participants completed the study. There was a statistically significant difference in MIC between groups (linear model interaction effect P = 0.002, observed mean difference, 0.19 [0.00-0.39] L). MIC increased by 0.13 (0.01-0.25) L in the LVR group, predominantly within the first month. No interaction or treatment effects were observed in secondary outcomes of lung volumes, respiratory system compliance, and quality of life. No adverse events were reported. Conclusions: Regular LVR increased MIC in a sample of LVR-naive participants with NMD. We found no direct evidence that regular LVR modifies respiratory mechanics or slows the rate of lung volume decline. The implications of increasing MIC are unclear, and the change in MIC may represent practice. Prospective long-term clinical cohorts with comprehensive follow-up, objective LVR use, and clinically meaningful outcome data are needed. Clinical trial registered with anzctr.org.au (ACTRN12615000565549).


Subject(s)
Neuromuscular Diseases , Quality of Life , Female , Humans , Adult , Middle Aged , Adolescent , Prospective Studies , Lung Volume Measurements , Lung , Neuromuscular Diseases/complications
5.
BMJ Open Respir Res ; 9(1)2022 12.
Article in English | MEDLINE | ID: mdl-36600411

ABSTRACT

INTRODUCTION: Reduced lung volumes are a hallmark of respiratory muscle weakness in neuromuscular disease (NMD). Low respiratory system compliance (Crs) may contribute to restriction and be amenable to lung volume recruitment (LVR) therapy. This study evaluated respiratory function and the immediate impact of LVR in rapidly progressive compared to slowly progressive NMD. METHODS: We compared vital capacity (VC), static lung volumes, maximal inspiratory and expiratory pressures (MIP, MEP), Crs and peak cough flow (PCF) in 80 adult participants with motor neuron disease ('MND'=27) and more slowly progressive NMDs ('other NMD'=53), pre and post a single session of LVR. Relationships between respiratory markers and a history of respiratory tract infections (RTI) were examined. RESULTS: Participants with other NMD had lower lung volumes and Crs but similar reduction in respiratory muscle strength compared with participants with MND (VC=1.30±0.77 vs 2.12±0.75 L, p<0.001; Crs=0.0331±0.0245 vs 0.0473±0.0241 L/cmH2O, p=0.024; MIP=39.8±21.3 vs 37.8±19.5 cmH2O). More participants with other NMD reported an RTI in the previous year (53% vs 22%, p=0.01). The likelihood of having a prior RTI was associated with baseline VC (%predicted) (OR=1.03 (95% CI 1.00 to 1.06), p=0.029). Published thresholds (VC<1.1 L or PCF<270 L/min) were, however, not associated with prior RTI.A single session of LVR improved Crs (mean (95% CI) increase = 0.0038 (0.0001 to 0.0075) L/cmH2O, p=0.047) but not VC. CONCLUSION: These findings corroborate the hypothesis that ventilatory restriction in NMD is related to weakness initially with respiratory system stiffness potentiating lung volume loss in slowly progressive disease. A single session of LVR can improve Crs. A randomised controlled trial of regular LVR is needed to assess longer-term effects.


Subject(s)
Neuromuscular Diseases , Respiratory Tract Infections , Adult , Humans , Lung , Lung Volume Measurements , Neuromuscular Diseases/therapy , Neuromuscular Diseases/complications , Respiratory Tract Infections/complications , Vital Capacity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...