Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Neurosci ; 17(1): 61, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27586269

ABSTRACT

BACKGROUND: Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. RESULTS: Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1ß and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. CONCLUSION: Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.


Subject(s)
Adrenal Medulla/physiopathology , Cytokines/metabolism , Hippocampus/metabolism , Neuroglia/metabolism , Oxidative Stress/physiology , Adrenalectomy , Animals , Cell Death/physiology , Corticosterone/blood , Hippocampus/pathology , Male , Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroglia/pathology , Neuroimmunomodulation/physiology , Neurons/metabolism , Neurons/pathology , Rats, Wistar , Time Factors
2.
J Chem Neuroanat ; 55: 38-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24394408

ABSTRACT

Previous investigations of the anatomical basis of the neuropathic-like manifestations in the spinal nerve ligation animal model have shown that the central terminations of the unmyelinated primary afferents of L5 spinal nerve are not restricted to the corresponding L5 spinal segment, and rather extend to two spinal segments rostrally and one segment caudally where they intermingle with primary afferents of the adjacent L4 spinal nerve. The aim of the present study was to investigate the neurochemical changes in the dorsal horn of the spinal cord and DRGs after L5 nerve injury in rats. In the first experiment, the right L5 nerve was ligated and sectioned for 14 days, and isolectin B4 (IB4, a tracer for unmyelinated primary afferents) was injected into the left L5 nerve. The results showed that the vasoactive intestinal peptide (VIP) was up-regulated in laminae I-II of L3-L6 spinal segments on the right side in exactly the same areas where IB4 labelled terminals were revealed on the left side. In the second experiment, L5 was ligated and sectioned and the spinal cord and DRGs were stained immunocytochemically with antibodies raised against various peptides known to be involved in pain transmission and hyperalgesia. The results showed that L5 nerve lesion caused down-regulation of substance P, calcitonin-gene related peptide and IB4 binding and up-regulation of neuropeptide Y and neurokinin-1 receptor in the dorsal horn of L4 and L5 spinal segments. Similar neurochemical changes were observed only in the corresponding L5 DRG with minimal effects observed in L3, L4 and L6 DRGs. Although, L5 nerve injury caused an up-regulation in NPY, no change in SP and CGRP immunoreactivity was observed in ipsilateral garcile nucleus. These neuroplastic changes in the dorsal horn of the spinal cord, in the adjacent uninjured territories of the central terminations of the adjacent uninjured nerves, might explain the mechanism of hyperalgesia after peripheral nerve injury.


Subject(s)
Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Spinal Nerves/injuries , Animals , Lumbar Vertebrae , Neuralgia/etiology , Neuropeptide Y/metabolism , Peripheral Nerve Injuries/complications , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism , Spinal Nerves/metabolism , Substance P/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL