Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Addict Health ; 16(1): 51-66, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38651025

ABSTRACT

The likelihood of substance dependency in offspring is increased in cases when there is a family history of drug or alcohol use. Mothering is limited by maternal addiction because of the separation. Maternal separation (MS) leads to the development of behavioural and neuropsychiatric issues in the future. Despite the importance of this issue, empirical investigations of the influences of maternal substance use and separation on substance use problems in offspring are limited, and studies that consider both effects are rare. This study aims to review a few studies on the mechanisms, treatments, genetics, epigenetics, molecular and psychological alterations, and neuroanatomical regions involved in the dependence of offspring who underwent maternal addiction and separation. The PubMed database was used. A total of 95 articles were found, including the most related ones in the review. The brain's lateral paragigantocellularis (LPGi), nucleus accumbens (NAc), caudate-putamen (CPu), prefrontal cortex (PFC), and hippocampus, can be affected by MS. Dopamine receptor subtype genes, alcohol biomarker minor allele, and preproenkephalin mRNA may be affected by alcohol or substance use disorders. After early-life adversity, histone acetylation in the hippocampus may be linked to brain-derived neurotrophic factor (BDNF) gene epigenetics and glucocorticoid receptors (GRs). The adverse early-life experiences differ in offspring>s genders and rewire the brain>s dopamine and endocannabinoid circuits, making offspring more susceptible to dependence. Related psychological factors rooted in early-life stress (ELS) and parental substance use disorder (SUD). Treatments include antidepressants, histone deacetylase inhibitors, lamotrigine, ketamine, choline, modafinil, methadone, dopamine, cannabinoid 1 receptor agonists/antagonists, vitamins, oxytocin, tetrahydrocannabinol, SR141716A, and dronabinol. Finally, the study emphasizes the need for multifaceted strategies to prevent these outcomes.

2.
Psychoneuroendocrinology ; 165: 107050, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38677097

ABSTRACT

Impaired decision-making constitutes a fundamental issue in numerous psychiatric disorders. Extensive research has established that early life adversity (ELA) increases vulnerability to psychiatric disorders later in life. ELA in human neonates is associated with changes in cognitive, emotional, as well as reward-related processing. Maternal separation (MS) is an established animal model of ELA and has been shown to be associated with decision-making deficits. On the other hand, enriched environment (EE) and intranasal oxytocin (OT) administration have been demonstrated to have beneficial effects on decision-making in humans or animals. Given these considerations, our investigation sought to explore the impact of brief exposure to EE and intranasal OT administration on the decision-making abilities of adolescent rats that had experienced MS during infancy. The experimental protocol involved subjecting rat pups to the MS regimen for 180 min per day from postnatal day (PND) 1 to PND 21. Then, from PND 22 to PND 34, the rats were exposed to EE and/or received intranasal OT (2 µg/µl) for seven days. The assessment of decision-making abilities, using a rat gambling task (RGT), commenced during adolescence. Our findings revealed that MS led to impaired decision-making and a decreased percentage of advantageous choices. However, exposure to brief EE or intranasal OT administration mitigated the deficits induced by MS and improved the decision-making skills of maternally-separated rats. Furthermore, combination of these treatments did not yield additional benefits. These results suggest that EE and OT may hold promise as therapeutic interventions to enhance certain aspects of cognitive performance.

3.
Birth Defects Res ; 116(4): e2310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563145

ABSTRACT

INTRODUCTION: In this study, we aimed to investigate the inflammatory factors, oxidative stress, and histopathological consequences of the brain-gut axis in male and female rats prenatally exposed to VPA. METHODS: Pregnant Wistar rats were randomly divided into two groups. The animals received saline, and valproic acid (VPA) (600 mg/kg, i.p.) on embryonic day 12.5 (E12.5). All offspring were weaned on postnatal day 21, and the experiments were done in male and female rats on day 60. The brain and intestine tissues were extracted to assess histopathology, inflammation, and oxidative stress. RESULTS: An increase of interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) and a decrease of interleukin-10 (IL-10) were observed in the two sexes and two tissues of the autistic rats. In the VPA-exposed animals, malondialdehyde (MDA) and protein carbonyl (PC) increased in the brain of both sexes and the intestines of only the males. The total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) significantly decreased in both tissues of male and female autistic groups. Histopathological evaluation showed that the %apoptosis of the cortex in the autistic male and female groups was more than in controls whereas this parameter in the CA1 and CA3 was significant only in the male rats. In the intestine, histopathologic changes were seen only in the male autistic animals. CONCLUSION: The inflammatory and antioxidant factors were in line in the brain-gut axis in male and female rats prenatally exposed to VPA. Histopathological consequences were more significant in the VPA-exposed male animals.


Subject(s)
Autistic Disorder , Valproic Acid , Pregnancy , Rats , Male , Female , Animals , Valproic Acid/toxicity , Autistic Disorder/chemically induced , Antioxidants/metabolism , Rats, Wistar , Brain-Gut Axis , Oxidative Stress , Interleukin-6
4.
Psychol Res ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492086

ABSTRACT

Monitoring errors consumes limited cognitive resources and can disrupt subsequent task performance in multitasking scenarios. However, there is a dearth of empirical evidence concerning this interference with prospective estimation of time. In this study, we sought to investigate this issue through a serial multitasking experiment, employing a temporal bisection task as the primary task. We introduced two task contexts by implementing two different concurrent tasks. In one context, participants were tasked with discriminating the size difference between two visual items, while in the other context, they were required to judge the temporal order of similar visual items. The primary task remained the same for the entire experiment. Psychophysical metrics, including subjective bias (determined by the bisection point) and temporal sensitivity (measured by the Weber ratio), in addition to reaction time, remained unaltered in the primary task regardless of the perceptual context exerted by the concurrent tasks. However, commission of error in the concurrent tasks (i.e., non-specific errors) led to a right-ward shift in the bisection point, indicating underestimation of time after errors. Applying a drift-diffusion framework for temporal decision making, we observed alterations in the starting point and drift rate parameters, supporting the error-induced underestimation of time. The error-induced effects were all diminished with increasing a delay between the primary and concurrent task, indicating an adaptive response to errors at a trial level. Furthermore, the error-induced shift in the bisection point was diminished in the second half of the experiment, probably because of a decline in error significance and subsequent monitoring response. These findings indicate that non-specific errors impact the prospective estimation of time in multitasking scenarios, yet their effects can be alleviated through both local and global reallocation of cognitive resources from error processing to time processing.

5.
Addict Biol ; 29(2): e13380, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333998

ABSTRACT

Humans demonstrate significant behavioural advantages with particular perceptual dimensions (such as colour or shape) and when the relevant dimension is repeated in consecutive trials. These dimension-related behavioural modulations are significantly altered in neuropsychological and addiction disorders; however, their underlying mechanisms remain unclear. Here, we studied whether these behavioural modulations exist in other trichromatic primate species and whether repeated exposure to opioids influences them. In a target detection task where the target-defining dimension (colour or shape) changed trial by trial, humans exhibited shorter response time (RT) and smaller event-related electrodermal activity with colour dimension; however, macaque monkeys had shorter RT with shape dimension. Although the dimensional biases were in the opposite directions, both species were faster when the relevant dimension was repeated, compared with conditions when it changed, across consecutive trials. These indicate that both species formed dimensional sets and that resulted in a significant 'switch cost'. Scheduled and repeated exposures to morphine, which is analogous to its clinical and recreational use, significantly augmented the dimensional bias in monkeys and also changed the switch cost depending on the relevant dimension. These cognitive effects occurred when monkeys were in abstinence periods (not under acute morphine effects) but expressing significant morphine-induced conditioned place preference. These findings indicate that significant dimensional biases and set formation are evolutionarily preserved in humans' and monkeys' cognition and that repeated exposure to morphine interacts with their manifestation. Shared neural mechanisms might be involved in the long-lasting effects of morphine and expression of dimensional biases and set formation in anthropoids.


Subject(s)
Analgesics, Opioid , Morphine , Humans , Animals , Morphine/pharmacology , Haplorhini , Analgesics, Opioid/pharmacology , Conditioning, Classical , Cognition
6.
Birth Defects Res ; 116(2): e2309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343145

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) represents an inheritable neurodevelopmental condition characterized by social communication deficits and repetitive behaviors. Numerous studies have underscored the significant roles played by genetic and environmental factors in the etiology of ASD, and these factors are known to perpetuate behavioral impairments across generations. OBJECTIVES: The primary objective of this study was to assess the behavioral and cognitive attributes in the second filial (F2) generation of male and female rats, with a particular focus on those whose parents had been exposed to valproic acid (VPA) during embryonic development. METHODS: In this study, a cohort of 32 male and 32 female rats from the second filial (F2) generation, referred to as Mother.ASD, Father.ASD, or Both.ASD, was examined. These designations indicate whether the mother, father, or both parents had experienced embryonic exposure to valproic acid (600 mg/kg, i.p.). During adolescence, the F2 pups underwent behavioral and cognitive assessments, including open field testing, marble burying, social interaction evaluations, and Morris water maze tasks. RESULTS: Our data revealed that while both the Mother.ASD and Father.ASD groups, regardless of sex, exhibited elevated anxiety-like behavior in the open field test. Only the Mother.ASD group displayed repetitive behaviors and deficits in social memory. Additionally, spatial memory impairments were observed in both sexes. These findings highlight the transmission of autistic-like behaviors in the offspring of Mother.ASD rats from both sexes. Nevertheless, future research endeavors should be more targeted in identifying the specific genes responsible for this transmission. CONCLUSION: In summary, our findings underscore the transmission of autistic-like behaviors, including anxiety-like behavior, repetitive actions, impairments in social interactions, and deficits in memory, to the offspring of the Mother.ASD group, irrespective of their sex.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cognitive Dysfunction , Humans , Pregnancy , Rats , Male , Female , Animals , Valproic Acid/adverse effects , Autism Spectrum Disorder/etiology , Social Behavior
7.
Alzheimers Res Ther ; 16(1): 27, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310304

ABSTRACT

OBJECTIVES: Mild cognitive impairment (MCI) is a neurocognitive disorder in which the cognitive and mental abilities of humans are declined. Transcranial direct-current stimulation (tDCS) is an emerging noninvasive brain stimulation technique aimed at neuromodulation. In this study, we investigate whether high-definition anodal tDCS stimulation (anodal HD-tDCS) in MCI patients in two different brain regions will be effective in improving cognitive function. METHODS: This study was done as a randomized, double-blind clinical trial. Sixty MCI patients (clinically diagnosed by expert neurologists) were randomly divided into three groups. Two groups received 2-mA anodal HD-tDCS for 20 min for 2 weeks (5 consecutive days in each week, 10 days in total). In the first group (twenty patients), the left dorsolateral prefrontal cortex (left DLPFC) was targeted. In the second group (twenty patients), the target zone was the dominant anterior temporal lobe (DATL). The third group (twenty patients) formed the Sham group. The Montreal Cognitive Assessment (MoCA) and Quality of Life in Alzheimer's Disease (QoLAD) were considered as the outcome measures. RESULTS: MCI patients obtained the highest MoCA mean scores in both left DLPFC and DATL groups versus the study baseline 2 weeks after the intervention. In addition, the MoCA mean scores of MCI patients were greater in both intervention groups compared to the Sham group up to 3 months post-stimulation (p-value ≤ 0.05). However, as we moved away from the first stimulation day, a decreasing trend in the MoCA mean scores was observed. Moreover, in the left DLPFC and DATL groups, higher QoLAD mean scores were observed 3-month post-stimulation, highlighting the effectiveness of anodal HD-tDCS in improving the quality of life in MCI patients. CONCLUSION: In this research, it was shown that applying anodal HD-tDCS at left DLPFC and DATL brain regains for two successive weeks improves cognitive function in MCI patients (by obtaining higher values of MoCA scores) up to 3 months after the intervention compared to the Sham group. This illustrates the positive effects of HD-tDCS, as a non-pharmacological intervention, for improving cognitive function and quality of life in MCI patients. SIGNIFICANCE: Two weeks after anodal HD-tDCS of the DLPFC and DATL brain regions, the MCI patients achieved the highest MoCA mean scores compared to the Sham group across all measurement intervals.


Subject(s)
Cognitive Dysfunction , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Dorsolateral Prefrontal Cortex , Prefrontal Cortex , Quality of Life , Cognitive Dysfunction/therapy , Temporal Lobe , Double-Blind Method
8.
Birth Defects Res ; 116(1): e2300, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38277409

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive behaviors and interests. In previous studies, music has been identified as an intervention therapy for children with ASD. OBJECTIVES: The present study evaluated the effects of music on cognitive behavioral impairments in both sexes of adult rats exposed prenatally to Valproic acid. METHODS: For induction of autism, pregnant female rats were pretreated with either saline or VPA (600 mg/kg.i.p.) at gestational day (GD) 12.5. Male and female offspring were divided into Saline.Non-Music, VPA.Non-Music, Saline.Music, and VPA.Music groups. The adult rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 60 to 90. Social interaction and Morris water maze (MWM) tasks were tested at PND 90. RESULTS: Our results revealed that prenatal exposure to VPA decreased sociability and social memory performance in both sexes of adult rats. Moreover, prenatal exposure to VPA created learning and memory impairments in both sexes of adult rats in the MWM task. Music intervention improved sociability in both sexes of VPA-exposed rats and social memory in both sexes of VPA-exposed rats, especially in females. Furthermore, our results revealed that music ameliorated learning impairments in VPA-exposed female rats in the MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes, especially in females, which needs more investigation in molecular and histological fields in future studies. CONCLUSION: Music intervention improved sociability and social memory in adult VPA-exposed rats, especially in female animals. Furthermore, music improved memory impairments in VPA-exposed rats of both sexes. It seems that music had a better influence on female rats. However, future studies need more investigations in molecular and histological fields.


Subject(s)
Autism Spectrum Disorder , Music , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Child , Rats , Male , Female , Animals , Valproic Acid/pharmacology , Prenatal Exposure Delayed Effects/pathology , Cognition
9.
Neuroimmunomodulation ; 31(1): 12-24, 2024.
Article in English | MEDLINE | ID: mdl-38151008

ABSTRACT

INTRODUCTION: Both sleep deprivation (SD) and inflammation can negatively affect cognitive function. This study aimed to investigate how SD impacts the brain's inflammatory response to lipopolysaccharide (LPS) and its subsequent effects on cognitive functions. METHODS: To this end, male rats were tested through a Morris water maze (MWM) to assess their spatial learning and memory. Also, in vivo field potential recordings (to evaluate synaptic plasticity) were done in the Saline, SD, LPS1 (1 mg/kg/7 days), and LPS1+SD groups. Cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Based on the results, the LPS1+SD group showed increased total distance and escape latency compared to the other groups in the MWM test. Besides, the LPS1+SD group exhibited a significant decrease in long-term potentiation (LTP) induction and maintenance in the CA1 area of the brain. Finally, the inflammatory cytokine interleukin-1ß (IL-1ß) levels were significantly higher in the LPS1+SD group than in the Saline group. CONCLUSION: These findings suggest that the combined effects of SD and brain inflammatory response can have more harmful effects on cognitive function, LTP, and inflammatory factors than either SD or LPS1 alone.


Subject(s)
Long-Term Potentiation , Spatial Learning , Rats , Male , Animals , Long-Term Potentiation/physiology , Spatial Learning/physiology , Sleep Deprivation/psychology , Lipopolysaccharides/toxicity , Maze Learning , Brain , Cytokines , Hippocampus
10.
Mol Neurobiol ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38148370

ABSTRACT

Asthma is an inflammatory disorder with significant health problems. It generally affects the lungs but can also impact brain performance via several mechanisms. Some investigations have proposed that asthma impairs cognition. This study assessed the impacts of myrtenol as a monoterpene on cognitive disorders following asthma at behavioral, molecular, and synaptic levels. Asthma was induced by injection and inhalation of ovalbumin (OVA). Male Wistar rats were allocated to five groups: control, asthma, asthma/vehicle, asthma/myrtenol, and asthma/budesonide. Myrtenol (8 mg/kg) or budesonide (160 µg/kg) was administered through inhalation once a day for 1 week, and at the end of the inhalation period, behavioral tests (MWM and Open Field), field potential recording, hippocampal brain-derived neurotrophic factor (BDNF), IL1ß (ELISA), and NFκB measurement (Western blot) were performed to evaluate cognitive performance. Moreover, H&E (hematoxylin and eosin) staining was used for hippocampus histological evaluation. Myrtenol improved spatial learning, memory, LTP (long-term potentiation) impairments, and anxiety-like behaviors following asthma. Myrtenol inhalation increased the BDNF level and decreased the IL1ß level and NFκB expression in the hippocampus of the asthmatic rats. The neuronal damage in the hippocampus following allergic asthma was alleviated via myrtenol administration. Myrtenol, as an herbal extract, protects the hippocampus from asthma consequences. Our observations revealed that myrtenol can improve spatial learning, memory, synaptic plasticity impairments, and anxiety-like behaviors following asthma. We believe that these ameliorating effects of myrtenol can be attributed to inflammation suppression and increased BDNF in the hippocampus.

11.
Neurosci Lett ; 812: 137365, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37393006

ABSTRACT

Maternal morphine exposure has negative consequences for learning and memory in the offspring. Interaction between mothers and pups has a crucial effect on the mammal's development. Maternal Separation (MS) can cause behavioral and neuropsychiatric problems later in life. It seems that adolescents are more susceptible to the effects of early life stress; evidence for the combinatory effects of oral chronic maternal morphine exposure and MS in the CA1 area of the hippocampus in the male adolescent offspring is not found. Therefore, this study aimed to evaluate the effects of chronic maternal morphine consumption (21 days before and after mating, and gestation), and MS (180 min/day from postnatal day (PND) 1-21) on the synaptic plasticity of male offspring in mid-adolescence. Control, MS, Vehicle (V), Morphine, V + MS, and Morphine + MS groups were tested for in vivo field potential recording from the CA1 area of the hippocampus. The current results demonstrated that chronic maternal morphine exposure impaired the induction of early long-term potentiation (LTP). MS impaired average fEPSPs, induction of early-LTP and maintenance. Chronic maternal morphine exposure in combination with MS impaired the induction of early LTP but didn't deteriorate maintenance and the average field excitatory post-synaptic potentials (fEPSPs) measured in two hours. Prepulse facilitation ratios remained undisturbed and I/O curves showed decreased fEPSP slopes at high stimulus intensities in combinatory group. We concluded that chronic maternal morphine exposure in combination with MS negatively affects synaptic plasticity in the CA1 area in male adolescent offspring.


Subject(s)
Morphine , Stress, Psychological , Animals , Male , Rats , Hippocampus , Long-Term Potentiation , Mammals , Maternal Deprivation , Morphine/adverse effects , Neuronal Plasticity
12.
Neuropeptides ; 101: 102357, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37393777

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly. Cognitive dysfunction represents a common and challenging non-motor symptom for people with Parkinson's disease. The number of neurotrophic proteins in the brain is critical in neurodegenerative diseases such as Parkinson's. This research aims to compare the effects of two types of exercise, forced and voluntary, on spatial memory and learning and neurochemical factors (CDNF and BDNF). METHODS: In this research, 60 male rats were randomly divided into six groups (n = 10): the control (CTL) group without exercise, the Parkinson's groups without and with forced (FE) and voluntary (VE) exercises, and the sham groups (with voluntary and forced exercise). The animals in the forced exercise group were placed on the treadmill for four weeks (five days a week). At the same time, voluntary exercise training groups were placed in a special cage equipped with a rotating wheel. At the end of 4 weeks, learning and spatial memory were evaluated with the Morris water maze test. BDNF and CDNF protein levels in the hippocampus were measured by the ELISA method. RESULTS: The results showed that although the PD group without exercise was at a significantly lower level than other groups in terms of cognitive function and neurochemical factors, both types of exercise, could improve these problems. CONCLUSION: According to our results, 4 weeks of voluntary and forced exercises were all found to reverse the cognitive impairments of PD rats.


Subject(s)
Parkinson Disease , Physical Conditioning, Animal , Rats , Male , Animals , Parkinson Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognition , Models, Animal , Maze Learning , Disease Models, Animal , Hippocampus/metabolism
13.
Behav Pharmacol ; 34(4): 179-196, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37171458

ABSTRACT

Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behavior. Many studies show that the number of cognitive impairmentscan be reduced by antagonists of the histamine H3 receptor (H3R). In this study, the effects of ciproxifan (CPX) (1 and 3 mg/kg, intraperitoneally) on cognitive impairments in rat pups exposed to valproic acid (VPA) (600 mg/kg, intraperitoneally) wereexamined on postnatal day 48-50 (PND 48-50) using marble-burying task (MBT), open field, novel object recognition (NOR), and Passive avoidance tasks. Famotidine (FAM) (10, 20, and 40 mg/kg, intraperitoneally) was also used to determine whether histaminergic neurotransmission exerts its procognitive effects via H2 receptors (H2Rs). Furthermore, a histological investigation was conducted to assess the degree of degeneration of hippocampal neurons. The results revealed that repetitive behaviors increased in VPA-exposed rat offspring in the MBT. In addition, VPA-exposed rat offspring exhibited more anxiety-like behaviors in the open field than saline-treated rats. It was found that VPA-exposed rat offspring showed memory deficits in NOR and Passive avoidance tasks. Our results indicated that 3 mg/kg CPX improved cognitive impairments induced by VPA, while 20 mg/kg FAM attenuated them. We concluded that 3 mg/kg CPX improved VPA-induced cognitive impairments through H3Rs. The histological assessment showed that the number of CA1 neurons decreased in the VPA-exposed rat offspring compared to the saline-exposed rat offspring, but this decrease was not significant. The histological assessment also revealed no significant differences in CA1 neurons in VPA-exposed rat offspring compared to saline-exposed rat offspring. However, CPX3 increased the number of CA1 neurons in the VPA + CPX3 group compared to the VPA + Saline group, but this increase was not significant. This study showed that rats prenatally exposed to VPA exhibit cognitive impairments in the MBT, open field, NOR, and Passive avoidance tests, which are ameliorated by CPX treatment on PND 48-50. In addition, morphological investigations showed that VPA treatment did not lead to neuronal degeneration in the CA1 subfield of the hippocampus in rat pups.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cognitive Dysfunction , Histamine H3 Antagonists , Prenatal Exposure Delayed Effects , Rats , Animals , Female , Humans , Valproic Acid/adverse effects , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Autistic Disorder/pathology , Histamine/pharmacology , Disease Models, Animal , Histamine H3 Antagonists/pharmacology , Cognition , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Behavior, Animal , Social Behavior
14.
Int J Dev Neurosci ; 83(5): 399-416, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37246451

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms including impairment in social communication and restrictive and repetitive behaviors and interests. Music has emerged in the past decade as an intervention therapy for children with ASD. The aim of the present study was to evaluate the effects of music on cognition impairments in the valproic acid (VPA) rat model of autism. The VPA was administered for animal modeling of autism on embryonic day 12.5 (E12.5) (600 mg/kg). Male and female pups were sub divided into four main groups (Saline.Non-music, VPA.Non-music, Saline.Music, and VPA.Music). The rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 21 to 50. Autistic-like behaviors were tested using a social interaction, the Morris water maze (MWM), and a passive avoidance tasks at the end of the PND 50. Our results demonstrated that VPA-exposed rat pups had significantly lower sociability and social memory performance compared with the saline-exposed rats in both sexes. VPA-exposed rat pups exhibited learning and memory impairments in the MWM and passive avoidance tasks. Our results demonstrated that music improved sociability in VPA-exposed rats, especially in males. Furthermore, our findings revealed that music improved learning impairments in VPA-exposed male rats in MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes. We also found that music improved passive avoidance memory impairments in VPA-exposed rats of both sexes, especially in females. More investigation in future studies are needed.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cognitive Dysfunction , Prenatal Exposure Delayed Effects , Rats , Male , Female , Animals , Humans , Autistic Disorder/chemically induced , Autistic Disorder/complications , Autistic Disorder/therapy , Autism Spectrum Disorder/chemically induced , Disease Models, Animal , Valproic Acid/therapeutic use , Valproic Acid/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Behavior, Animal , Social Behavior
15.
Front Pharmacol ; 14: 1128496, 2023.
Article in English | MEDLINE | ID: mdl-37033637

ABSTRACT

Background: Neuropathy is a prevalent and debilitating complication of poorly managed diabetes, contributing towards poor quality of life, amputation risk, and increased mortality. The available therapies for diabetic neuropathic pain (DPN) have limitations in terms of efficacy, tolerability and patient compliance. Dysfunction in the peripheral and central monoaminergic system has been evidenced in various types of neuropathic and acute pain. The objective of the present study was to investigate 1-methyl 1, 2, 3, 4-tetrahydroisoquinoline (1MeTIQ), an endogenous amine found in human brain with a known neuroprotective profile, in a model of streptozotocin (STZ) induced neuropathic pain. Methods: Diabetic neuropathy in male BALB/c mice was induced by intraperitoneal injection of a single dose of STZ (200 mg/kg). Upon development of DPN after 4 weeks, mice were investigated for mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test). Ondansetron (1.0 mg/kg i.p.), naloxone (3.0 mg/kg i.p.) and yohimbine (2.0 mg/kg i.p.) were used to elucidate the possible mechanism involved. Postmortem frontal cortical, striatal and hippocampal tissues were dissected and evaluated for changes in levels of dopamine, noradrenaline and serotonin using High-Performance Liquid Chromatography (HPLC) with UV detection. Results: Acute administration of 1MeTIQ (15-45 mg/kg i.p.) reversed streptozotocin-induced diabetic neuropathic static mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test), these outcomes being comparable to standard gabapentin. Furthermore, HPLC analysis revealed that STZ-diabetic mice expressed lower concentrations of serotonin in all three brain regions examined, while dopamine was diminished in the striatum and 1MeTIQ reversed all these neurotransmitter modifications. These findings suggest that the antihyperalgesic/antiallodynic activity of 1MeTIQ may be mediated in part via supraspinal opioidergic and monoaminergic modulation since they were naloxone, yohimbine and ondansetron reversible. Conclusion: It was also concluded that acute treatment with 1MeTIQ ameliorated STZ-induced mechanical allodynia and thermal hyperalgesia and restored brain regionally altered serotonin and dopamine concentrations which signify a potential for 1MeTIQ in the management of DPN.

16.
Front Pharmacol ; 14: 1135497, 2023.
Article in English | MEDLINE | ID: mdl-37033640

ABSTRACT

Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.

17.
Brain Behav ; 13(5): e2993, 2023 05.
Article in English | MEDLINE | ID: mdl-37062939

ABSTRACT

INTRODUCTION: Autism spectrum disorder is a developmental disorder that can affect sensory-motor behaviors in the valproic acid (Val) rodent model of autism. Although whisker deprivation (WD) induces plastic changes in the cortical neurons, tactile stimulation (TS) during the neonatal period may reverse it. Here, we investigate the interaction effects of TS and WD on behavioral and histologic features of barrel cortex neurons in juvenile Val-treated. METHODS: Control (CTL, CTL-TS, CTL-WD, and CTL-TS-WD groups) and Val-treated (Val, Val-TS, Val-WD, and Val-TS-WD groups) rats of both sexes were subjected to behavioral tests of social interaction, and novel texture recognition, and Nissl staining. The TS groups were exposed to sensory stimulation for 15 min, three times/day; moreover, all whiskers in the WD groups were trimmed every other day from postnatal days 1 to 21. RESULTS: Both prenatal valproic acid administration and postnatal WD decreased the rats' performance percentage of the Val and CTL-WD groups of both sexes compared with the CTL groups in the social interaction and texture discrimination tests. Following TS, the performance of the Val-TS-WD group increased significantly compared to the Val group (p < .05), whereas the performance of the CTL-TS-WD group rescued to the CTL group. Nissl staining results also revealed the neuron degeneration percentage in the barrel field area of the Val and CTL-WD groups was increased significantly (p < .05) compared with the CTL group. In this regard, TS decreased the neuron degeneration percentage of the Val-TS-WD and the CTL-TS-WD groups, compared with the CTL group, significantly (p < .05). CONCLUSION: TS in juvenile male and female rats can act as a modulator and compensate for the behavioral and histological consequences of WD and prenatal valproic acid exposure.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Pregnancy , Rats , Animals , Male , Female , Social Interaction , Vibrissae/physiology , Valproic Acid/pharmacology , Somatosensory Cortex
18.
Neurochem Res ; 48(7): 2220-2229, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36894794

ABSTRACT

There are general inhibitory effects of exo-cannabinoids on dopamine-mediated behaviors. Many studies suggested the interaction between cannabinoid receptors and dopamine receptors in the brain that affect cognition behaviors. In this paper, we investigate the effects of marijuana on 6-OHDA-induced cognitive impairments and the expression of dopamine and cannabinoid receptors in the hippocampus of male rats. 42 rats were divided into six groups. 6-hydroxy dopamine (6-OHDA) was administrated into the substantia nigra. Marijuana (60 mg/kg; i.p.) was administered 28 days, one week after the 6-OHDA injection. Morris water maze (MWM) and novel object recognition tests were performed. The hippocampal expression levels of cannabinoid receptors and D1 and D2 dopamine receptors evaluate by real-time PCR. The results showed marijuana improved the spatial learning and memory disorders caused by 6-OHDA in the MVM task and novel object recognition test. Additionally, the level of both D1 and D2 mRNA was decreased in 6-OHDA-treated animals and marijuana consumption only increased the hippocampal level of D1 mRNA. Moreover, the level of hippocampal CB1 mRNA in 6-OHDA- treated rats was higher than in control rats. However, the hippocampal level of CB2 mRNA was decreased in 6-OHDA- treated rats. Marijuana consumption caused a significant decrease in CB1 mRNA level and an increase in CB2 mRNA level in 6-OHDA + marijuana group. Therefore, marijuana may be helpful for learning & memory disorders, D1, and D2 dopamine receptors, and cannabinoid receptor alteration in patients with Parkinson's disease.


Subject(s)
Cannabis , Dopamine , Rats , Male , Animals , Dopamine/metabolism , Oxidopamine/toxicity , Cannabis/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Memory Disorders , Spatial Learning , Hippocampus/metabolism , Cognition
19.
Int J Dev Neurosci ; 83(3): 235-247, 2023 May.
Article in English | MEDLINE | ID: mdl-36794284

ABSTRACT

Maternal morphine exposure reduces motivation for basic cognitive tasks, followed by executive function deficits in attention and accuracy. It also induces depression-like behaviors and has negative consequences for learning and memory in offspring. Interaction between mothers and pups has a crucial effect on the mammal's development. Maternal separation (MS) can originate behavioral and neuropsychiatric abnormalities later in life. It seems that adolescents are more susceptible to the effects of early-life stress; Therefore, this study aimed to evaluate the effects of chronic morphine consumption (21 days before and after mating and gestation) and MS (180 min/day from postnatal day [PND] 1-21) on the cognitive and behavioral performance of male offspring in mid-adolescence. Six groups, including control, MS, V (vehicle), morphine, V+MS, and morphine+MS, were tested for open field (OF), novel object recognition (NOR), and the Morris water maze (MWM). The results of the OF test showed that MS increased locomotor activity and movement velocity. Inner and outer zone durations did not differ among groups. The body stretching of the morphine+MS rats was significantly more than the MS rats. Moreover, the MS and morphine+MS groups showed significantly less sniffing behavior in the OF test. The MS group showed deficits in spatial learning in the MWM test, but recognition memory in the NOR and spatial memory in the MWM tests were not significantly different among groups. We concluded that MS could induce impairments in spatial learning and locomotor activity that could be worsened by maternal morphine exposure in adolescent male rats.


Subject(s)
Maternal Deprivation , Morphine , Rats , Animals , Male , Morphine/pharmacology , Rats, Wistar , Maze Learning , Cognition , Locomotion , Mammals
20.
Toxicol Ind Health ; 39(2): 115-126, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36650049

ABSTRACT

The fungicide mancozeb increases oxygen-free radicals in the central nervous system. As an antioxidant, L-carnitine protects DNA and cell membranes from damage caused by oxygen-free radicals. The present study investigated how L-carnitine affected the acoustic startle response (ASR) in rats exposed to mancozeb. In this experimental study, male Wistar rats were gavaged orally with mancozeb (500, 1000, and 2000 mg/kg), L-carnitine (100, 200, and 400 mg/kg), or L-carnitine (200 mg/kg) + mancozeb (500 mg/kg) three times in 1 week. In the sham group, saline (0.9%, 10 mL/kg) was gavaged at a volume equivalent to that of the drugs. The control group did not receive any treatment. The results showed that locomotor activity and the percentage of prepulse inhibition in the mancozeb groups decreased compared to the sham group while these parameters increased in the L-carnitine group (200 mg/kg) compared to sham rats. In conclusion, mancozeb may increase the risk factor for cognitive diseases such as schizophrenia in people exposed to it while pretreatment with L-carnitine can attenuate the toxic effect.


Subject(s)
Maneb , Reflex, Startle , Rats , Animals , Male , Reflex, Startle/physiology , Rats, Wistar , Carnitine/pharmacology , Maneb/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...