Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Proc Natl Acad Sci U S A ; 121(38): e2410679121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39264739

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Enterotoxins , Escherichia coli Infections , Escherichia coli Proteins , Host-Pathogen Interactions , Enterotoxigenic Escherichia coli/metabolism , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Enterotoxins/metabolism , Bacterial Toxins/metabolism , Extracellular Vesicles/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Diarrhea/microbiology , Diarrhea/metabolism
2.
Article in English | MEDLINE | ID: mdl-39246143

ABSTRACT

This study examined the effect of exposure of small and large intestinal epithelial cells to the bacterial lipopolysaccharide (LPS) on uptake of free form of vitamin B1, i.e., thiamin. The intestinal tract encounters two sources of thiamin: diet and the gut microbiota. Absorption of thiamin in both the small and large intestine occurs via a carrier-mediated process that involves thiamin transporters-1 & -2 (THTR-1 & -2). Complementary in vitro (human duodenal epithelial HuTu-80 cells and human colonic epithelial NCM460 cells), in vivo (mice), and ex vivo (human primary differentiated enteroid and colonoid monolayers) models were used. The results showed that exposure to LPS causes a significant inhibition in carrier-mediated [3H]-thiamin uptake by small and large intestinal epithelia, with no change in levels of expression of THTR-1& -2 mRNAs and their total cellular proteins. However, a significant decrease in the fractions of the THTR-1& -2 proteins that are expressed at the cell membranes of these epithelial cells was observed. These effects of LPS appeared to involve a protein kinase A (PKA) signaling pathway as activating this pathway caused a reversal in the inhibition of thiamin uptake and level of expression of its transporters at the cell membrane. These findings demonstrate that exposure of gut epithelia to LPS (a situation that occurs under different pathological conditions) leads to inhibition in thiamin uptake due to a decrease in level of expression of its transporters at the cell membrane that is likely mediated via a PKA-signaling pathway.

3.
PLoS Pathog ; 20(9): e1012241, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283948

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

4.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091797

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.

5.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766097

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

6.
Am J Physiol Cell Physiol ; 325(3): C758-C769, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37519229

ABSTRACT

This study investigated the effect of the bacterial endotoxin lipopolysaccharide (LPS) on colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1 that is generated by gut microbiota. We used three complementary models in our study: in vitro (human-derived colonic epithelial NCM460), ex vivo (human differentiated colonoid monolayers), and in vivo (mouse colonic tissue). The results showed that exposure of NCM460 cells to LPS leads to a significant inhibition of carrier-mediated TPP uptake as well as in decreased expression of the colonic TPP transporter (cTPPT) protein, mRNA, and heterologous nuclear RNA (hnRNA) compared with untreated controls. Similarly, exposure of human differentiated colonoid monolayers and mice to LPS caused significant inhibition in colonic carrier-mediated TPP uptake and in cTPPT protein, mRNA, and hnRNA expression. The effect of LPS on colonic TPP uptake and cTTPT expression was also found to be associated with a significant reduction in activity of the SLC44A4 promoter as well as in decreased expression of the nuclear factor Elf-3 (E74-like ETS transcription factor 3), which is needed for promoter activity. Finally, we found that knocking down the Toll-like receptor 4 (TLR4) and blocking the nuclear factor kappa B (NF-κB), JNK, and p38 signaling pathways with the use of pharmacological inhibitors lead to significant abrogation in the degree of LPS-mediated inhibition in TPP uptake and cTPPT expression. These results demonstrated that exposure of colonic epithelia to LPS inhibits colonic TPP uptake via transcriptional mechanism(s) and that the effect is mediated via TLR4 receptor and NF-κB/p38/JNK signaling pathways.NEW & NOTEWORTHY This study examined the effect of the bacterial lipopolysaccharide (LPS) on the colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1. Three complementary models were used: in vitro (human NCM460 cells), ex vivo (human colonoids), and in vivo (mice). The results showed LPS to significantly suppress TPP uptake and the expression of its transporter, and that these effects are mediated via the membrane TLR4 receptor, and involve the NF-κB/p38/JNK signaling pathways.


Subject(s)
NF-kappa B , Thiamine Pyrophosphate , Humans , Mice , Animals , Thiamine Pyrophosphate/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Diphosphates , MAP Kinase Signaling System , RNA, Heterogeneous Nuclear/metabolism , Cell Line , Thiamine/metabolism , RNA, Messenger/metabolism
7.
Front Immunol ; 14: 1120331, 2023.
Article in English | MEDLINE | ID: mdl-36865539

ABSTRACT

The pathogenic Escherichia coli can be parsed into specific variants (pathovars) depending on their phenotypic behavior and/or expression of specific virulence factors. These pathogens are built around chromosomally-encoded core attributes and through acquisition of specific virulence genes that direct their interaction with the host. Engagement of E. coli pathovars with CEACAMs is determined both by core elements common to all E. coli as well as extrachromosomally-encoded pathovar-specific virulence traits, which target amino terminal immunoglobulin variable-like (IgV) regions of CEACAMs. Emerging data suggests that engagement of CEACAMs does not unilaterally benefit the pathogen and that these interactions may also provide an avenue for pathogen elimination.


Subject(s)
Escherichia coli , Virulence Factors , Escherichia coli/genetics , Phenotype , Virulence
8.
Am J Physiol Cell Physiol ; 323(6): C1664-C1680, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36342158

ABSTRACT

The aim of this study was to examine the effect of TNFα (i.e., a predominant proinflammatory cytokine produced during chronic gut inflammation) on colonic uptake of thiamin pyrophosphate (TPP) and free thiamin, forms of vitamin B1 that are produced by the gut microbiota and are absorbed via distinct carrier-mediated systems. We utilized human-derived colonic epithelial CCD841 and NCM460 cells, human differentiated colonoid monolayers, and mouse intact colonic tissue preparations together with an array of cellular/molecular approaches in our investigation. The results showed that exposure of colonic epithelial cells to TNFα leads to a significant inhibition in TPP and free thiamin uptake. This inhibition was associated with: 1) a significant suppression in the level of expression of the colonic TPP transporter (cTPPT; encoded by SLC44A4), as well as thiamin transporters-1 & 2 (THTR-1 & -2; encoded by SLC19A2 & SLC19A3, respectively); 2) marked inhibition in activity of the SLC44A4, SLC19A2, and SLC19A3 promoters; and 3) significant suppression in level of expression of nuclear factors that are needed for activity of these promoters (i.e., CREB-1, Elf-3, NF-1A, SP-1). Furthermore, the inhibitory effects were found to be mediated via JNK and ERK1/2 signaling pathways. We also examined the level of expression of cTPPT and THTR-1 & -2 in colonic tissues of patients with active ulcerative colitis and found the levels to be significantly lower than in healthy controls. These findings demonstrate that exposure of colonocytes to TNFα suppresses TPP and free thiamin uptake at the transcriptional level via JNK- and Erk1/2-mediated pathways.


Subject(s)
Thiamine Pyrophosphate , Tumor Necrosis Factor-alpha , Humans , Mice , Animals , Thiamine Pyrophosphate/metabolism , Tumor Necrosis Factor-alpha/metabolism , Acinar Cells/metabolism , Thiamine/metabolism , Thiamine/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
9.
Nat Commun ; 13(1): 6886, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371425

ABSTRACT

Enterotoxigenic E. coli (ETEC) produce heat-labile (LT) and/or heat-stable (ST) enterotoxins, and commonly cause diarrhea in resource-poor regions. ETEC have been linked repeatedly to sequelae in children including enteropathy, malnutrition, and growth impairment. Although cellular actions of ETEC enterotoxins leading to diarrhea are well-established, their contributions to sequelae remain unclear. LT increases cellular cAMP to activate protein kinase A (PKA) that phosphorylates ion channels driving intestinal export of salt and water resulting in diarrhea. As PKA also modulates transcription of many genes, we interrogated transcriptional profiles of LT-treated intestinal epithelia. Here we show that LT significantly alters intestinal epithelial gene expression directing biogenesis of the brush border, the major site for nutrient absorption, suppresses transcription factors HNF4 and SMAD4 critical to enterocyte differentiation, and profoundly disrupts microvillus architecture and essential nutrient transport. In addition, ETEC-challenged neonatal mice exhibit substantial brush border derangement that is prevented by maternal vaccination with LT. Finally, mice repeatedly challenged with toxigenic ETEC exhibit impaired growth recapitulating the multiplicative impact of recurring ETEC infections in children. These findings highlight impacts of ETEC enterotoxins beyond acute diarrheal illness and may inform approaches to prevent major sequelae of these common infections including malnutrition that impact millions of children.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Malnutrition , Mice , Animals , Enterotoxins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Infections/prevention & control , Diarrhea
10.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34807735

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Subject(s)
Bacterial Toxins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Diarrhea , Enterocytes , Enterotoxigenic Escherichia coli/metabolism , Enterotoxins/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Intestine, Small , Mucin-2/genetics , Mucin-2/metabolism , Mucins/metabolism
11.
J Infect Dis ; 224(12 Suppl 2): S813-S820, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34273153

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) are ubiquitous diarrheal pathogens that thrive in areas lacking basic human needs of clean water and sanitation. These genetically plastic organisms cause tremendous morbidity among disadvantaged young children, in the form of both acute diarrheal illness and sequelae of malnutrition and growth impairment. The recent discovery of additional plasmid-encoded virulence factors and elucidation of their critical role in the molecular pathogenesis of ETEC may inform new approaches to the development of broadly protective vaccines. Although the pathogens have been closely linked epidemiologically with nondiarrheal sequelae, these conditions remain very poorly understood. Similarly, while canonical effects of ETEC toxins on cellular signaling promoting diarrhea are clear, emerging data suggest that these toxins may also drive changes in intestinal architecture and associated sequelae. Elucidation of molecular events underlying these changes could inform optimal approaches to vaccines that prevent acute diarrhea and ETEC-associated sequelae.


Subject(s)
Diarrhea/prevention & control , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Proteins , Escherichia coli Vaccines , Bacterial Toxins , Child , Child, Preschool , Enterotoxigenic Escherichia coli/genetics , Enterotoxins , Humans , Malnutrition , Plasmids
12.
Gastroenterol Clin North Am ; 50(2): 283-304, 2021 06.
Article in English | MEDLINE | ID: mdl-34024442

ABSTRACT

Acute bacterial gastroenteritis is among the most common infections worldwide, with millions of infections annually in the United States. Much of the illness is foodborne, occurring as both sporadic cases and large multistate outbreaks. Pathogen evolution through genetic exchange of virulence traits and antibiotic resistance determinants poses challenges for empiric therapy. Culture-independent diagnostic tests in clinical laboratories afford rapid diagnosis and expanded identification of pathogens. However, cultures remain important to generate sensitivity data and strain archiving for outbreak investigations. Most infections are self-limited, permitting judicious selection of antibiotic use in more severe forms of illness.


Subject(s)
Foodborne Diseases , Gastroenteritis , Bacteria , Disease Outbreaks , Foodborne Diseases/diagnosis , Foodborne Diseases/epidemiology , Gastroenteritis/diagnosis , Gastroenteritis/epidemiology , Humans , United States
13.
Proc Natl Acad Sci U S A ; 117(46): 29055-29062, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139570

ABSTRACT

The enterotoxigenic Escherichia coli (ETEC) are among the most common causes of diarrheal illness and death due to diarrhea among young children in low-/middle-income countries (LMICs). ETEC have also been associated with important sequelae including malnutrition and stunting, placing children at further risk of death from diarrhea and other infections. Our understanding of the molecular pathogenesis of acute diarrheal disease as well as the sequelae linked to ETEC are still evolving. It has long been known that ETEC heat-labile toxin (LT) activates production of cAMP in the cell, signaling the modulation of cellular ion channels that results in a net efflux of salt and water into the intestinal lumen, culminating in watery diarrhea. However, as LT also promotes ETEC adhesion to intestinal epithelial cells, we postulated that increases in cAMP, a critical cellular "second messenger," may be linked to changes in cellular architecture that favor pathogen-host interactions. Indeed, here we show that ETEC use LT to up-regulate carcinoembryonic antigenrelated cell adhesion molecules (CEACAMs) on the surface of small intestinal epithelia, where they serve as critical bacterial receptors. Moreover, we show that bacteria are specifically recruited to areas of CEACAM expression, in particular CEACAM6, and that deletion of this CEACAM abrogates both bacterial adhesion and toxin delivery. Collectively, these results provide a paradigm for the molecular pathogenesis of ETEC in which the bacteria use toxin to drive up-regulation of cellular targets that enhances subsequent pathogen-host interactions.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Adhesins, Bacterial/metabolism , Antigens, CD/genetics , Bacterial Toxins/metabolism , Caco-2 Cells , Cell Adhesion Molecules/genetics , Diarrhea/microbiology , Epithelial Cells/metabolism , Escherichia coli Infections/microbiology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Intestinal Mucosa/metabolism , Transcriptome
15.
J Clin Invest ; 128(8): 3298-3311, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771685

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.


Subject(s)
ABO Blood-Group System/metabolism , Diarrhea , Enterotoxigenic Escherichia coli , Epithelial Cells/metabolism , Escherichia coli Infections/metabolism , Intestinal Mucosa/metabolism , Adhesins, Escherichia coli/metabolism , Diarrhea/metabolism , Diarrhea/microbiology , Diarrhea/pathology , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/pathology , Escherichia coli Infections/pathology , Female , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Severity of Illness Index
16.
Sci Rep ; 7(1): 3402, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611468

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing world and are characterized on a molecular level by the presence of genes that encode the heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors (CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal combination of genetic factors required for survival, virulence and transmission in the most successful clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific genomic regions when compared to non-ETEC genomes, as well as genes that are more associated with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates lacked any previously identified CF. Homology searches with the structural subunits of known CFs identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by directing investigations of pathogenesis, virulence regulation and vaccine development.


Subject(s)
Diarrhea/genetics , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Proteins/genetics , Genetic Variation , Genomics/methods , Virulence Factors/genetics , Bangladesh/epidemiology , Case-Control Studies , DNA, Bacterial , Diarrhea/epidemiology , Diarrhea/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Genotype , Humans , Phylogeny
17.
PLoS Negl Trop Dis ; 11(5): e0005586, 2017 May.
Article in English | MEDLINE | ID: mdl-28531220

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens.


Subject(s)
Adhesins, Bacterial/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Epithelial Cells/microbiology , Fimbriae, Bacterial/metabolism , Host-Pathogen Interactions , Bacterial Adhesion , Bacterial Toxins/metabolism , Caco-2 Cells , Enterotoxins/metabolism , Escherichia coli Proteins/metabolism , Humans , Protein Transport
18.
mBio ; 6(3): e00501, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26060273

ABSTRACT

UNLABELLED: Enterotoxigenic E. coli (ETEC) can cause severe diarrhea and death in children in developing countries; however, bacterial diversity in natural infection is uncharacterized. In this study, we explored the natural population variation of ETEC from individuals with cholera-like diarrhea. Genomic sequencing and comparative analysis of multiple ETEC isolates from twelve cases of severe diarrhea demonstrated clonal populations in the majority of subjects (10/12). In contrast, a minority of individuals (2/12) yielded phylogenomically divergent ETEC isolates. Detailed examination revealed that isolates also differed in virulence factor content. These genomic data suggest that severe, cholera-like ETEC infections are largely caused by a clonal population of organisms within individual patients. Additionally, the isolation of similar clones from geographically and temporally dispersed cases with similar clinical presentations suggests that some isolates are particularly suited for virulence. The identification of multiple genomically diverse isolates with variable virulence factor profiles from a single subject highlights the dynamic nature of ETEC, as well as a potential weakness in the examination of cultures obtained from a single colony in clinical settings. These findings have implications for vaccine design and provide a framework for the study of population variation in other human pathogens. IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC) has been identified as one of the major causes of diarrheal diseases in children as well as travelers. It has been previously appreciated that this pathogenic variant of E. coli is diverse, both at the genomic level, as defined with multilocus sequence typing, and with regard to the presence or absence of virulence factors within clonal groups. Using whole-genome sequencing and comparative analysis, we identified and characterized diverse enterotoxigenic E. coli isolates from individual patients. In 17% of patients, we identified multiple distinct ETEC isolates, each with unique genomic features and in some cases diverse virulence factor profiles. These studies ascertained that any one person may be colonized by multiple pathogenic ETEC isolates, which may impact how we think about the development of vaccines and therapeutics against these organisms.


Subject(s)
Diarrhea/microbiology , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Genetic Variation , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Diarrhea/pathology , Enterotoxigenic Escherichia coli/classification , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/pathology , Genome, Bacterial , Genotype , Humans , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Virulence Factors/genetics
19.
PLoS Negl Trop Dis ; 9(4): e0003619, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849611

ABSTRACT

BACKGROUND: Children bear a large burden of typhoid fever caused by Salmonella enterica serotype Typhi (S. Typhi) in endemic areas. However, immune responses and clinical findings in children are not well defined. Here, we describe clinical and immunological characteristics of young children with S. Typhi bacteremia, and antimicrobial susceptibility patterns of isolated strains. METHODS: As a marker of recent infection, we have previously characterized antibody-in-lymphocyte secretion (TPTest) during acute typhoid fever in adults. We similarly assessed membrane preparation (MP) IgA responses in young children at clinical presentation, and then 7-10 days and 21-28 days later. We also assessed plasma IgA, IgG and IgM responses and T cell proliferation responses to MP at these time points. We compared responses in young children (1-5 years) with those seen in older children (6-17 years), adults (18-59 years), and age-matched healthy controls. PRINCIPAL FINDINGS: We found that, compared to age-matched controls patients in all age cohorts had significantly more MP-IgA responses in lymphocyte secretion at clinical presentation, and the values fell in all groups by late convalescence. Similarly, plasma IgA responses in patients were elevated at presentation compared to controls, with acute and convalescent IgA and IgG responses being highest in adults. T cell proliferative responses increased in all age cohorts by late convalescence. Clinical characteristics were similar in all age cohorts, although younger children were more likely to present with loss of appetite, less likely to complain of headache compared to older cohorts, and adults were more likely to have ingested antibiotics. Multi-drug resistant strains were present in approximately 15% of each age cohort, and 97% strains had resistance to nalidixic acid. CONCLUSIONS: This study demonstrates that S. Typhi bacteremia is associated with comparable clinical courses, immunologic responses in various age cohorts, including in young children, and that TPTest can be used as marker of recent typhoid fever, even in young children.


Subject(s)
Bacteremia/immunology , Salmonella typhi/drug effects , Typhoid Fever/epidemiology , Typhoid Fever/immunology , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Bangladesh/epidemiology , Cell Proliferation/physiology , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Salmonella typhi/immunology , Species Specificity , T-Lymphocytes/immunology , Young Adult
20.
PLoS Negl Trop Dis ; 9(1): e0003446, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25629897

ABSTRACT

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) are common causes of diarrheal morbidity and mortality in developing countries for which there is currently no vaccine. Heterogeneity in classical ETEC antigens known as colonization factors (CFs) and poor efficacy of toxoid-based approaches to date have impeded development of a broadly protective ETEC vaccine, prompting searches for novel molecular targets. METHODOLOGY: Using a variety of molecular methods, we examined a large collection of ETEC isolates for production of two secreted plasmid-encoded pathotype-specific antigens, the EtpA extracellular adhesin, and EatA, a mucin-degrading serine protease; and two chromosomally-encoded molecules, the YghJ metalloprotease and the EaeH adhesin, that are not specific to the ETEC pathovar, but which have been implicated in ETEC pathogenesis. ELISA assays were also performed on control and convalescent sera to characterize the immune response to these antigens. Finally, mice were immunized with recombinant EtpA (rEtpA), and a protease deficient version of the secreted EatA passenger domain (rEatApH134R) to examine the feasibility of combining these molecules in a subunit vaccine approach. PRINCIPAL FINDINGS: EtpA and EatA were secreted by more than half of all ETEC, distributed over diverse phylogenetic lineages belonging to multiple CF groups, and exhibited surprisingly little sequence variation. Both chromosomally-encoded molecules were also identified in a wide variety of ETEC strains and YghJ was secreted by 89% of isolates. Antibodies against both the ETEC pathovar-specific and conserved E. coli antigens were present in significantly higher titers in convalescent samples from subjects with ETEC infection than controls suggesting that each of these antigens is produced and recognized during infection. Finally, co-immunization of mice with rEtpA and rEatApH134R offered significant protection against ETEC infection. CONCLUSIONS: Collectively, these data suggest that novel antigens could significantly complement current approaches and foster improved strategies for development of broadly protective ETEC vaccines.


Subject(s)
Antigens, Bacterial/immunology , Enterotoxigenic Escherichia coli/immunology , Animals , Antigens, Bacterial/genetics , Carrier Proteins/immunology , Conserved Sequence , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Membrane Glycoproteins/immunology , Mice , Peptide Hydrolases , Vaccination , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL