Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 1(1): e17, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33484500

ABSTRACT

Fungi infect over a billion people worldwide and contribute substantially to human morbidity and mortality despite all available therapies. New antifungal drugs are urgently needed. Decades of study have revealed numerous protein targets of potential therapeutic interest for which potent, fungal-selective ligands remain to be discovered and developed. To measure the binding of diverse small molecule ligands to their larger protein targets, fluorescence polarization (FP) can provide a robust, inexpensive approach. The protocols in this article provide detailed guidance for developing FP-based assays capable of measuring binding affinity in whole cell lysates without the need for purification of the target protein. Applications include screening of libraries to identify novel ligands and the definition of structure-activity relationships to aid development of compounds with improved target affinity and fungal selectivity. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Use of saturation binding curves to optimize tracer and lysate protein concentrations Basic Protocol 2: Establishment of competition binding experiments Support Protocol 1: Preparation of fungal cell lysates Support Protocol 2: Preparation of human HepG2 cell lysate.


Subject(s)
Fungi , Proteins , Binding, Competitive , Fluorescence Polarization , Humans , Ligands
2.
Cell Chem Biol ; 27(3): 269-282.e5, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31924499

ABSTRACT

New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.


Subject(s)
Candida albicans/drug effects , Candidiasis/drug therapy , Drug Resistance, Fungal/drug effects , Fungal Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cells, Cultured , Echinocandins/chemistry , Echinocandins/pharmacology , Fungal Proteins/metabolism , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Protein Kinase Inhibitors/chemistry
3.
J Med Chem ; 63(5): 2139-2180, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31513387

ABSTRACT

The molecular chaperone Hsp90, essential in all eukaryotes, plays a multifaceted role in promoting survival, virulence, and drug resistance across diverse pathogenic fungal species. The chaperone is also critically important, however, to the pathogen's human host, preventing the use of known clinical Hsp90 inhibitors in antifungal applications due to concomitant host toxicity issues. With the goal of developing Hsp90 inhibitors with acceptable therapeutic indices for the treatment of invasive fungal infections, we initiated a program to design and synthesize potent inhibitors with selective activity against fungal Hsp90 isoforms over their human counterparts. Building on our previously reported derivatization of resorcylate natural products to produce fungal-selective compounds, we have developed a series of synthetic aminopyrazole-substituted resorcylate amides with broad, potent, and fungal-selective Hsp90 inhibitory activity. Herein we describe the synthesis of this series, as well as biochemical structure-activity relationships driving selectivity for the Hsp90 isoforms expressed by Cryptococcus neoformans and Candida albicans, two pathogenic fungi of major clinical importance.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Fungal Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Amination , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida albicans/metabolism , Candidiasis/drug therapy , Candidiasis/microbiology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus neoformans/metabolism , Drug Design , Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
4.
Nat Commun ; 10(1): 402, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679438

ABSTRACT

New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/metabolism , Drug Resistance, Fungal/drug effects , Fungal Proteins/drug effects , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/drug effects , Animals , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/pathogenicity , Cell Line , Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Heterocyclic Compounds, 4 or More Rings/antagonists & inhibitors , Humans , Isoxazoles/antagonists & inhibitors , Mice , Models, Molecular , Molecular Chaperones , Protein Binding , Protein Conformation , Protein Domains , Recombinant Proteins , Resorcinols/antagonists & inhibitors , Signal Transduction/drug effects , Triazoles/antagonists & inhibitors , Virulence/drug effects
5.
Antimicrob Agents Chemother ; 60(12): 7468-7480, 2016 12.
Article in English | MEDLINE | ID: mdl-27736764

ABSTRACT

Invasive fungal infections are a leading cause of human mortality. Effective treatment is hindered by the rapid emergence of resistance to the limited number of antifungal drugs, demanding new strategies to treat life-threatening fungal infections. Here, we explore a powerful strategy to enhance antifungal efficacy against leading human fungal pathogens by using the natural product beauvericin. We found that beauvericin potentiates the activity of azole antifungals against azole-resistant Candida isolates via inhibition of multidrug efflux and that beauvericin itself is effluxed via Yor1. As observed in Saccharomyces cerevisiae, we determined that beauvericin inhibits TOR signaling in Candida albicans To further characterize beauvericin activity in C. albicans, we leveraged genome sequencing of beauvericin-resistant mutants. Resistance was conferred by mutations in transcription factor genes TAC1, a key regulator of multidrug efflux, and ZCF29, which was uncharacterized. Transcriptional profiling and chromatin immunoprecipitation coupled to microarray analyses revealed that Zcf29 binds to and regulates the expression of multidrug transporter genes. Beyond drug resistance, we also discovered that beauvericin blocks the C. albicans morphogenetic transition from yeast to filamentous growth in response to diverse cues. We found that beauvericin represses the expression of many filament-specific genes, including the transcription factor BRG1 Thus, we illuminate novel circuitry regulating multidrug efflux and establish that simultaneously targeting drug resistance and morphogenesis provides a promising strategy to combat life-threatening fungal infections.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Antifungal Agents/pharmacology , Candida albicans/drug effects , Depsipeptides/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/antagonists & inhibitors , Gene Expression Regulation, Fungal , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Azoles/pharmacology , Base Sequence , Biological Products/pharmacology , Candida albicans/genetics , Candida albicans/growth & development , Candida albicans/metabolism , Drug Synergism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Microarray Analysis , Mutation , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Nat Chem Biol ; 12(10): 867-75, 2016 10.
Article in English | MEDLINE | ID: mdl-27571477

ABSTRACT

There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance.


Subject(s)
Antifungal Agents/pharmacology , Depsipeptides/pharmacology , Fungi/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Antifungal Agents/chemistry , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Drug Resistance, Fungal/drug effects , Drug Resistance, Multiple/drug effects , Fungi/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Small Molecule Libraries/chemistry , TOR Serine-Threonine Kinases/metabolism
7.
Future Microbiol ; 9(4): 523-42, 2014.
Article in English | MEDLINE | ID: mdl-24810351

ABSTRACT

Fungal pathogens cause life-threatening infections in immunocompetent and immunocompromised individuals. Millions of people die each year due to fungal infections, comparable to the mortality attributable to tuberculosis or malaria. The three most prevalent fungal pathogens are Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungi are eukaryotes like their human host, making it challenging to identify fungal-specific therapeutics. There is a limited repertoire of antifungals in clinical use, and drug resistance and host toxicity compromise the clinical utility. The three classes of antifungals for treatment of invasive infections are the polyenes, azoles and echinocandins. Understanding mechanisms of resistance to these antifungals has been accelerated by global and targeted approaches, which have revealed that antifungal drug resistance is a complex phenomenon involving multiple mechanisms. Development of novel strategies to block the emergence of drug resistance and render resistant pathogens responsive to antifungals will be critical to treating life-threatening fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Drug Resistance, Fungal , Mycoses/microbiology , Aspergillus fumigatus/isolation & purification , Azoles/pharmacology , Candida albicans/isolation & purification , Cryptococcus neoformans/isolation & purification , Echinocandins/pharmacology , Humans , Polyenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...