Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(16): 12020-12028, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34328730

ABSTRACT

The effect of annealing on structural and thermochemical properties of a thorite-xenotime solid solution Th1-xErx(SiO4)1-x(PO4)x was assessed. The samples synthesized at low temperatures and stored at room temperature for 2 years retained their tetragonal structures. This structure was also maintained after heating to 1100 °C. During annealing, the structure lost water and exsolved some thorianite phases. The thermodynamic parameters did not change much after annealing, suggesting that xenotime was not a low-temperature metastable phase but rather a stable structure able to withstand elevated temperatures regardless of the thorium content. The solid solution exhibited subregular behavior with the Margules function W(x) = (73.1 ± 20.1) - (125.7 ± 49.8)·x.

2.
Front Chem ; 6: 604, 2018.
Article in English | MEDLINE | ID: mdl-30619814

ABSTRACT

Rare earth phosphates comprise a large family of compounds proposed as possible nuclear waste disposal forms. We report structural and thermodynamic properties of a series of rare earth rhabdophanes and monazites. The water content of the rhabdophanes, including both adsorbed and structural water, decreases linearly with increase in ionic radius of the rare earth. The energetics of the transformation of rhabdophane to monazite plus water and the enthalpy of formation of rhabdophane from the constituent oxides was determined by high temperature drop solution calorimetry. The former varies linearly with the ionic radius of the lanthanide, except for cerium. By combining the enthalpy of formation determined by high temperature drop solution calorimetry and the free energy of formation determined previously by solubility experiments, a complete set of thermodynamic data was derived for the rhabdophanes. They are thermodynamically metastable with respect to the corresponding monazites plus water at all temperatures under ambient pressure conditions. This conclusion strengthens the case for monazites being an excellent nuclear waste form.

SELECTION OF CITATIONS
SEARCH DETAIL
...