Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Chem Biol Interact ; 401: 111164, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111524

ABSTRACT

Ganoderic Acid A (GAA) has demonstrated beneficial effects in anti-inflammatory and anti-oxidative stress studies. However, it remains unknown whether GAA exerts positive impacts on bone loss induced by lipopolysaccharide (LPS). This study aims to investigate the influence of GAA on bone loss in LPS-treated rats. The study assesses changes in the viability and osteogenic potential of MC3T3-E1 cells, as well as osteoclast differentiation in RAW264.7 cells in the presence of LPS using CCK-8, ALP staining, AR staining, and Tartrate-resistant acid phosphatase (TRAP) staining. In vitro experiments indicate that LPS-induced inhibition of osteoclasts (OC) and Superoxide Dismutase 2 (SOD2) correlates with heightened levels of inflammation and oxidative stress. Furthermore, GAA has displayed the ability to alleviate oxidative stress and inflammation, enhance osteogenic differentiation, and suppress osteoclast differentiation. Animal experiment also proves that GAA notably upregulates SOD2 expression and downregulates TNF-α expression, leading to the restoration of impaired bone metabolism, improved bone strength, and increased bone mineral density. The collective experimental findings strongly suggest that GAA can enhance osteogenic activity in the presence of LPS by reducing inflammation and oxidative stress, hindering osteoclast differentiation, and mitigating bone loss in LPS-treated rat models.


Subject(s)
Cell Differentiation , Heptanoic Acids , Inflammation , Lanosterol , Lipopolysaccharides , Osteoclasts , Osteogenesis , Oxidative Stress , Rats, Sprague-Dawley , Superoxide Dismutase , Animals , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Male , Mice , Rats , RAW 264.7 Cells , Superoxide Dismutase/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/therapeutic use , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Bone Density/drug effects , Tumor Necrosis Factor-alpha/metabolism , Bone Resorption/prevention & control , Bone Resorption/drug therapy , Bone Resorption/metabolism
3.
Biomaterials ; 311: 122675, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38943822

ABSTRACT

Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.


Subject(s)
Copper , Ferroptosis , Hydrogels , Osteosarcoma , Oxidative Stress , Ferroptosis/drug effects , Hydrogels/chemistry , Copper/chemistry , Copper/pharmacology , Oxidative Stress/drug effects , Animals , Humans , Cell Line, Tumor , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Osteosarcoma/pathology , Mice , Alginates/chemistry , Mice, Nude , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
4.
Neurosurg Focus ; 56(6): E10, 2024 06.
Article in English | MEDLINE | ID: mdl-38823056

ABSTRACT

OBJECTIVE: Hoffmann's sign testing is a commonly used physical examination in clinical practice for patients with cervical spondylotic myelopathy (CSM). However, the pathophysiological mechanisms underlying its occurrence and development have not been thoroughly investigated. Therefore, the present study aimed to explore whether a positive Hoffmann's sign (PHS) in CSM patients is associated with spinal cord and brain remodeling and to identify potential neuroimaging biomarkers with diagnostic value. METHODS: Seventy-six patients with CSM and 40 sex- and age-matched healthy controls (HCs) underwent multimodal MRI. Based on the results of the Hoffmann's sign examination, patients were divided into two groups: those with a PHS (n = 38) and those with a negative Hoffmann's sign (NHS; n = 38). Quantification of spinal cord and brain structural and functional parameters of the participants was performed using various methods, including functional connectivity analysis, voxel-based morphometry, and atlas-based analysis based on functional MRI and structural MRI data. Furthermore, this study conducted a correlation analysis between neuroimaging metrics and neurological function and utilized a support vector machine (SVM) algorithm for the classification of PHS and NHS. RESULTS: In comparison with the NHS and HC groups, PHS patients exhibited significant reductions in the cross-sectional area and fractional anisotropy (FA) of the lateral corticospinal tract (CST), reticulospinal tract (RST), and fasciculus cuneatus, concomitant with bilateral reductions in the volume of the lateral pallidum. The functional connectivity analysis indicated a reduction in functional connectivity between the left lateral pallidum and the right angular gyrus in the PHS group. The correlation analysis indicated a significant positive association between the CST and RST FA and the volume of the left lateral pallidum in PHS patients. Furthermore, all three variables exhibited a positive correlation with the patients' motor function. Finally, using multimodal neuroimaging metrics in conjunction with the SVM algorithm, PHS and NHS were classified with an accuracy rate of 85.53%. CONCLUSIONS: This research revealed a correlation between structural damage to the pallidum and RST and the presence of Hoffmann's sign as well as the motor function in patients with CSM. Features based on neuroimaging indicators have the potential to serve as biomarkers for assessing the extent of neuronal damage in CSM patients.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Spinal Cord Diseases , Spondylosis , Humans , Male , Female , Middle Aged , Spondylosis/diagnostic imaging , Neuroimaging/methods , Spinal Cord Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Adult , Cervical Vertebrae/diagnostic imaging
5.
J Neurosurg Spine ; : 1-11, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905708

ABSTRACT

OBJECTIVE: Cervical spondylotic myelopathy (CSM) stands as the most prevalent form of spinal cord injury, frequently prompting various changes in both the brain and spinal cord. However, the precise nature of these changes within the brains and spinal cords of CSM patients experiencing hand clumsiness (HCL) symptoms has remained elusive. The authors aimed to scrutinize these alterations and explore potential links between these changes and the onset of HCL symptoms. METHODS: Using the modified Japanese Orthopaedic Association (mJOA) scale, the authors classified CSM patients into two groups: those without HCL and those with HCL. The authors performed voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (FC) evaluations in the brain. Additionally, they used the Spinal Cord Toolbox to calculate the fractional anisotropy (FA) of spinal cord tracts. The analysis also encompassed an examination of the correlation of these measures with improvements in mJOA scores. RESULTS: Significant disparities in zALFF values surfaced in the right calcarine, right cuneus, right precuneus, right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), and right superior parietal gyrus (SPG) between healthy controls (HC), patients without HCL, and patients with HCL, primarily within the visual cortex. In the patient group, patients with HCL displayed reduced FC between the right calcarine, right MOG, right SOG, right SPG, right SFG, bilateral MFG, and left median cingulate and paracingulate gyri when compared with patients without HCL. Moreover, significant differences in FA values of the corticospinal tract (CST) and reticulospinal tract (REST) at the C2 level emerged among HC, patients without HCL, and patients with HCL. Notably, zALFF, FC, and FA values in specific brain regions and spinal cord tracts exhibited correlations with mJOA upper-extremity scores. Additionally, FA values of the CST and REST correlated with zALFF values in the right calcarine, right MOG, right SOG, and right SPG. CONCLUSIONS: Alterations within brain regions associated with the visual cortex, the fronto-parietal-occipital attention network, and spinal cord pathways appear to play a substantial role in the emergence and progression of HCL symptoms. Furthermore, the existence of a potential connection between the spinal cord and the brain suggests that this link might be related to the clinical symptoms of CSM.

6.
J Neurosurg Spine ; 41(2): 199-208, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788239

ABSTRACT

OBJECTIVE: The aim of this study was to design a novel lumbar cortical bone trajectory (CBT) penetrating the anterior, middle, and posterior vertebral area using imaging; measure the relevant parameters to find theoretical parameters and screw placement possibilities; and investigate the optimal implantation trajectory of the CBT in patients with osteoporosis. METHODS: Three types of CBTs with appropriate lengths were selected to simulate screw placement using Mimics software. These CBTs were classified as the leading tip of the trajectory pointing to the posterior quarter area (original CBT [CBT-O]) and middle (novel CBT A [CBT-A]) and anterior quarter (novel CBT B [CBT-B]) of the superior endplate. The authors then measured the maximum screw diameter (MSD) and length (MSL), cephalad (CA) and lateral (LA) angles, and bone mineral density (Hounsfield unit [HU] values) of the planned novel 3-column CBT screw placements. The differences in the parameters of the novel CBTs, the percentages of successfully planned CBT screws, and the factors that influenced the successful planning of 3-column CBT screws were analyzed. RESULTS: Three-column CBT screws were successfully designed in all segments of the lumbar spine. The success rate of the 3-column CBT planned screws was 72.25% (83.25% for CBT-A and 61.25% for CBT-B). From the CBT-O type, to the CBT-A type, to the CBT-B type, the LA, CA, and MSD of the novel CBT screws decreased with increasing trajectory length. The HU values of the three types of trajectories were all significantly higher than that of the traditional pedicle screw trajectory (p < 0.001). The main factor affecting successful planning of the 3-column CBT screw was pedicle width. CONCLUSIONS: Moderating adjustment of the original screw parameters by reducing LAs and CAs to penetrate the anterior, middle, and posterior columns of the vertebral body using the 3-column CBT screw is feasible, especially in the lower lumbar spine.


Subject(s)
Cortical Bone , Lumbar Vertebrae , Humans , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Cortical Bone/surgery , Cortical Bone/diagnostic imaging , Aged , Female , Male , Middle Aged , Osteoporosis/surgery , Osteoporosis/diagnostic imaging , Bone Density/physiology , Bone Screws , Tomography, X-Ray Computed , Spinal Fusion/methods , Spinal Fusion/instrumentation
7.
Global Spine J ; : 21925682241247489, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606957

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: The study aimed to compare the radiological parameters, clinical outcomes, and long-term effects of the posterior osteosynthesis with polyaxial screw-rod system and the monoaxial screw-rod system in the treatment of unstable atlas fractures. METHODS: We retrospectively analyzed the clinical data of 33 patients with posterior ORIF for unstable atlas fractures in our hospital from August 2013 to June 2020, with a minimum of 3 years of follow-up. Polyaxial screws (group A) were used in 12 patients and monoaxial screws (group B) in 21 patients. Perioperative data, radiological parameters, and clinical outcomes were collected and compared between the 2 surgical approaches. RESULTS: The operative time, blood loss, time of screw-rod system placement, and hospital stay were significantly lower in group A than in group B. At the last follow-up, the visual analog scale (VAS) score and anterior arch reduction rate of the atlas in group A were lower than those in group B, while the lateral mass displacement (LMD) in group A was higher than that in group B. There was no significant difference between Group A and Group B in terms of the anterior atlantodental interval (AADI), posterior arch reduction rate of the atlas, range of motion (ROM), and neck disability index (NDI). CONCLUSIONS: Monoaxial screws can achieve better reduction results for unstable atlas fractures, especially for the anterior arch of atlas. However, the surgical operation of monoaxial screws is more complicated than that of polyaxial screws and has more complications. Appropriate implants should be selected for the treatment of unstable atlas fractures based on the type of atlas fracture, the experience of surgeons, and the demands of patients.

8.
Redox Rep ; 29(1): 2333096, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38623993

ABSTRACT

OBJECTIVES: The study aimed to assess the role of Astaxanthin (ATX) in palmitic acid(PA) -induced bone loss in Ovariectomized(OVX) rats. METHODS: In the OVX rat model, we observed that PA affects bone metabolism and accelerates bone loss. Additionally, treatment with ATX was able to suppress the deleterious effects of PA and a simultaneous decrease in serum MDA levels and an increase in SOD was observed. RESULTS: In addition, rats treated with ATX were observed to have significantly increased bone mass and elevated activity of SIRT1 and SOD2 in bone tissue. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclast differentiation, the ATX intervention was able to significantly restore the restriction of osteogenic differentiation and the up-regulation of osteoclast differentiation with PA therapy. Furthermore, we confirm that PA damage to cells is caused by increased oxidative stress, and that ATX can target and modulate the activity of SIRT1 to regulate the levels of oxidative stress in cells. CONCLUSION: Summarizing, ATX may inhibit PA-induced bone loss through its antioxidant properties via the SIRT1 signaling pathway.


Subject(s)
Osteoporosis , Rats , Animals , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteogenesis , Palmitic Acid/toxicity , Sirtuin 1 , Cell Differentiation , Oxidative Stress , Xanthophylls
10.
J Biomater Appl ; 38(10): 1073-1086, 2024 05.
Article in English | MEDLINE | ID: mdl-38569649

ABSTRACT

Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, ß-tricalcium phosphate (ß-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of ß-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.


Subject(s)
Calcium Phosphates , Osteogenesis , Rats, Sprague-Dawley , Animals , Osteogenesis/drug effects , Female , Mice , Calcium Phosphates/chemistry , Rats , Ovariectomy , Cell Line , Osteoporosis/drug therapy , Bone Regeneration/drug effects , Femur/drug effects , Femur/metabolism
11.
Neuroimage ; 290: 120558, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38437909

ABSTRACT

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Subject(s)
Connectome , Low Back Pain , Humans , Low Back Pain/diagnostic imaging , Brain , Thalamus , Magnetic Resonance Imaging/methods
12.
Adv Sci (Weinh) ; 11(17): e2306577, 2024 May.
Article in English | MEDLINE | ID: mdl-38441409

ABSTRACT

Spinal cord injury (SCI) leads to massive cell death, disruption, and demyelination of axons, resulting in permanent motor and sensory dysfunctions. Stem cell transplantation is a promising therapy for SCI. However, owing to the poor microenvironment that develops following SCI, the bioactivities of these grafted stem cells are limited. Cell implantation combined with biomaterial therapies is widely studied for the development of tissue engineering technology. Herein, an insulin-like growth factor-1 (IGF-1)-bioactive supramolecular nanofiber hydrogel (IGF-1 gel) is synthesized that can activate IGF-1 downstream signaling, prevent the apoptosis of neural stem cells (NSCs), improve their proliferation, and induce their differentiation into neurons and oligodendrocytes. Moreover, implantation of NSCs carried out with IGF-1 gels promotes neurite outgrowth and myelin sheath regeneration at lesion sites following SCI. In addition, IGF-1 gels can enrich extracellular vesicles (EVs) derived from NSCs or from nerve cells differentiated from these NSCs via miRNAs related to axonal regeneration and remyelination, even in an inflammatory environment. These EVs are taken up by autologous endogenous NSCs and regulate their differentiation. This study provides adequate evidence that combined treatment with NSCs and IGF-1 gels is a potential therapeutic strategy for treating SCI.


Subject(s)
Hydrogels , Insulin-Like Growth Factor I , Nanofibers , Neural Stem Cells , Spinal Cord Injuries , Animals , Rats , Cell Differentiation , Disease Models, Animal , Hydrogels/chemistry , Insulin-Like Growth Factor I/metabolism , Nanofibers/chemistry , Nanofibers/therapeutic use , Nerve Regeneration/drug effects , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation/methods , Female
13.
Eur J Med Res ; 29(1): 196, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528617

ABSTRACT

OBJECTIVE: Intervertebral disc degeneration (IVDD) is a major cause of morbidity and disability. Our study aimed to investigate the potential of cartilage oligomeric matrix protein (COMP) and ADAMTS7 (A disintegrin and metalloproteinases with thrombospondin motifs 7) as biomarkers for IVDD together with their functional relationship. METHODS: IVD tissues and peripheral blood samples were collected from IVDD rabbit models over 1-4 weeks. Tissues and blood samples were also collected from clinical patients those were stratified into four equal groups according to Pfirrmann IVDD grading (I-V) with baseline data collected for each participant. COMP and ADAMTS7 expression were analyzed and biomarker characteristics were assessed using linear regression and receiver operating curve (ROC) analyses. RESULTS: COMP and ADAMTS7 expression increased in tissues and serum during IVDD progression. Serum COMP (sCOMP) and serum ADAMTS7 (sADAMTS7) levels increased in a time-dependent manner following IVD damage in the rabbit model while significant positive correlations were detected between sCOMP and sADAMTS7 and Pfirrmann grade in human subjects. ROC analysis showed that combining sCOMP and sADAMTS7 assay results produced an improved diagnostic measure for IVDD compared to individual sCOMP or sADAMTS7 tests. In vitro assays conducted on human cell isolates revealed that COMP prevented extracellular matrix degradation and antagonized ADAMTS7 expression although this protective role was uncoupled under microenvironmental conditions mimicking IVDD. CONCLUSIONS: Increases in circulating COMP and ADAMTS7 correlate with IVDD progression and may play regulatory roles. Assays for sCOMP and/or sADAMTS7 levels can discriminate between healthy subjects and IVDD patients, warranting further clinical assessment.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Humans , Rabbits , ADAMTS7 Protein , Biomarkers/metabolism , Cartilage Oligomeric Matrix Protein/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/diagnosis
14.
World Neurosurg ; 185: e995-e1003, 2024 05.
Article in English | MEDLINE | ID: mdl-38462068

ABSTRACT

BACKGROUND: Butterfly vertebra (BV) is a rare congenital spinal anomaly for which there is a paucity of large-scale retrospective studies and established guidelines for treatment. The objective of this study was to elucidate the clinical characteristics, imaging findings, and therapeutic approaches for BV. METHODS: We conducted a retrospective analysis of 30 patients diagnosed with BV at our hospital from 2009 to 2023, examining clinical data, imaging findings, and clinical interventions. RESULTS: The analysis comprised a cohort of 30 patients, consisting of 15 males and 15 females, with a mean age of 27.63 ± 19.84 years. Imaging studies indicated that the majority of vertebral bodies affected by BV were single-segmented (63.3%, 19/30) and less commonly multi-segmented (36.7%, 11/30). These findings frequently coexisted with other medical conditions, most notably spinal scoliosis (76.7%, 23/30). Furthermore, the study identified a range of spinal abnormalities among patients, including hemivertebral deformity (30.0%, 9/30), spinal cleft (10.0%, 3/30), lumbar disc protrusion or herniation (10.0%, 3/30), vertebral slippage (10.0%, 3/30), thoracic kyphosis deformity (6.67%, 2/30), vertebral fusion deformity (6.67%, 2/30), compressive fractures (3.3%, 1/30), and vertebral developmental anomalies (3.3%, 1/30). Clinical intervention resulted in symptom relief for 23 nonsurgical patients through lifestyle modifications, analgesic use, and physical therapy. Seven surgical patients underwent appropriate surgical procedures, leading to satisfaction and adherence to regular postoperative follow-up appointments. CONCLUSIONS: BV is a rare vertebral anomaly that can be easily misdiagnosed due to its similarity to other diseases. Consequently, it is imperative to enhance vigilance in the differential diagnosis process in order to promptly recognize BV. Furthermore, in cases where patients present with additional associated radiographic findings, a thorough evaluation is typically warranted and timely measures should be taken for treatment.


Subject(s)
Vertebral Body , Humans , Male , Female , Retrospective Studies , Adult , Adolescent , Young Adult , Middle Aged , Child , Child, Preschool , Vertebral Body/surgery , Vertebral Body/diagnostic imaging , Spinal Diseases/surgery , Spinal Diseases/diagnostic imaging , Aged
15.
Sci Rep ; 14(1): 4342, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38383583

ABSTRACT

Surgical intervention is typically recommended for thoracic ossification of the ligamentum flavum (TOLF). This study aimed to evaluate the efficacy and safety of a novel non-coaxial one-hole split endoscope (OSE) technique for treating TOLF. We performed OSE procedure on 13 patients with TOLF from June 2022 to July 2023. The mean operative time was 117.5 ± 15.4 min. VAS scores for lower limbs decreased from 6.5 ± 0.8 preoperative to 1.6 ± 0.4 at the last follow-up (P < 0.001). ODI scores improved from 62.4 ± 5.7 preoperative to 18.6 ± 2.2 at the last follow-up (P < 0.001), and mJOA scores increased from 5.1 ± 1.6 preoperative to 8.4 ± 1.5 at the latest follow-up (P < 0.001). All patients achieved ASIA scale grade D or E at the final follow-up, except for two patients remained residual limb numbness. None of the thirteen patients suffered from severe perioperative complications. The OSE technique proves to be a safe and effective procedure for treating TOLF or even with dura mater ossification, characterized by minimal surgical trauma, relatively smooth learning curve and flexible operation.


Subject(s)
Ligamentum Flavum , Ossification, Heterotopic , Humans , Osteogenesis , Ossification, Heterotopic/surgery , Ossification, Heterotopic/complications , Ligamentum Flavum/surgery , Thoracic Vertebrae/surgery , Endoscopes , Treatment Outcome , Retrospective Studies
16.
Inflammation ; 47(4): 1229-1247, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38316670

ABSTRACT

Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), and inflammatory factors play crucial roles in its pathogenesis. Follistatin-like 1 (FSTL1) has been reported to induce an inflammatory response in chondrocytes, microglia and preadipocytes, but its role in the pathogenesis of nucleus pulposus cell (NPC) degeneration remains unclear. In this study, we mainly utilized an acidosis-induced NPC degeneration model and a rabbit puncture IVDD model to investigate the role of FSTL1 in IVDD both in vitro and in vivo. We confirmed that FSTL1 expression significantly increased in nucleus pulposus (NP) tissues from IVDD patients and rabbit puncture IVDD models. The expression levels of FSTL1 were significantly increased in all three models of NPC degeneration under harsh microenvironments. In addition, recombinant human FSTL1 (rh-FSTL1) was found to upregulate the expression of p16 and p21, increase the number of senescence-associated ß-galactosidase (SA-ß-gal)-positive cells, induce senescence-related secretory phenotypes (SASP), and downregulate extracellular matrix (ECM) protein expressions, leading to an imbalance in ECM metabolism destructions. Conversely, silencing of FSTL1 by small interfering RNA (siRNA) ameliorated senescence of NPCs associated with inflammation in IVDD. Furthermore, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway plays a crucial role in regulating NPC senescence through FSTL1 regulation. Inhibition of TLR4 expression partly reversed the effects of rh-FSTL1 on NPC senescence-associated inflammation. Finally, rabbit IVDD model experiments demonstrated that the specific FSTL1 siRNA markedly repressed the development of IVDD. These findings may offer a therapeutic approach for mitigating inflammation-induced senescence associated with IVDD.


Subject(s)
Cellular Senescence , Follistatin-Related Proteins , Intervertebral Disc Degeneration , NF-kappa B , Nucleus Pulposus , Signal Transduction , Toll-Like Receptor 4 , Follistatin-Related Proteins/metabolism , Follistatin-Related Proteins/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Animals , Rabbits , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Humans , Cells, Cultured , Male
17.
ACS Appl Mater Interfaces ; 16(4): 4462-4477, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240605

ABSTRACT

Critical-size bone defects are a common and intractable clinical problem that typically requires filling in with surgical implants to facilitate bone regeneration. Considering the limitations of autologous bone and allogeneic bone in clinical applications, such as secondary damage or immunogenicity, injectable microhydrogels with osteogenic and angiogenic effects have received considerable attention. Herein, polydopamine (PDA)-functionalized strontium alginate/nanohydroxyapatite (Sr-Alg/nHA) composite microhydrogels loaded with vascular endothelial growth factor (VEGF) were prepared using microfluidic technology. This composite microhydrogel released strontium ions stably for at least 42 days to promote bone formation. The PDA coating can release VEGF in a controlled manner, effectively promote angiogenesis around bone defects, and provide nutritional support for new bone formation. In in vitro experiments, the composite microhydrogels had good biocompatibility. The PDA coating greatly improves cell adhesion on the composite microhydrogel and provides good controlled release of VEGF. Therefore, this composite microhydrogel effectively promotes osteogenic differentiation and vascularization. In in vivo experiments, composite microhydrogels were injected into critical-size bone defects in the skull of rats, and they were shown by microcomputed tomography and tissue sections to be effective in promoting bone regeneration. These findings demonstrated that this novel microhydrogel effectively promotes bone formation and angiogenesis at the site of bone defects.


Subject(s)
Indoles , Osteogenesis , Polymers , Vascular Endothelial Growth Factor A , Rats , Animals , Vascular Endothelial Growth Factor A/pharmacology , Alginates/pharmacology , X-Ray Microtomography , Angiogenesis , Bone Regeneration , Skull , Hydroxyapatites/pharmacology , Strontium/pharmacology
19.
Int J Surg ; 110(1): 478-489, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37755380

ABSTRACT

OBJECTIVES: Chronic low back pain (CLBP) can seriously impair the quality of life of patients and has a remarkable comorbidity with psychological symptoms, which, in turn, can further exacerbate the symptoms of CLBP. Psychological treatments are critical and nonnegligent for the management of CLBP, and thus, should attract sufficient attention. However, current evidence does not suggest the superiority and effectiveness of nonpharmacological interventions in reducing psychological symptoms among patients with CLBP.Thus, this study was designed to compare the effectiveness of nonpharmacological interventions for depression, anxiety, and mental health among patients with CLBP and to recommend preferred strategies for attenuating psychological symptoms in clinical practice. METHODS: In this systematic review and network meta-analysis (NMA), PubMed, Embase Database, Web of Science, and Cochrane Library were searched from database inception until March 2022. Randomized clinical trials (RCTs) that compare different nonpharmacological interventions for depression, anxiety, and mental health among patients with CLBP were eligible. The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was used. Four reviewers in pairs and divided into two groups independently performed literature selection, data extraction, and risk of bias, and certainty of evidence assessments. This NMA was conducted with a random effects model under a frequentist framework. The major outcomes were depression, anxiety, and mental health presented as the standardized mean difference (SMD) with the corresponding 95% CI. RESULTS: A total of 66 RCTs that randomized 4806 patients with CLBP met the inclusion criteria. The quality of evidence was typically low or some risks of bias (47 out of 66 trials, 71.3%), and the precision of summary estimates for effectiveness varied substantially. In addition, 7 categories of interventions with 26 specific treatments were evaluated. For depression, mind body therapy (pooled SMD = -1.20, 95% CI: -1.63 to -0.78), biopsychosocial approach (pooled SMD = -0.41, 95% CI: -0.70 to -0.12), and physical therapy (pooled SMD = -0.26, 95% CI: -0.50 to -0.02) exhibited remarkable effectiveness in reducing depression compared with the control group. For managing anxiety, mind body therapy (pooled SMD = -1.35, 95% CI: -1.90 to -0.80), multicomponent intervention (pooled SMD = -0.47, 95% CI: -0.88 to -0.06), and a biopsychosocial approach (pooled SMD = -0.46, 95% CI: -0.79 to -0.14) were substantially superior to the control group. For improving mental health, multicomponent intervention (pooled SMD = 0.77, 95% CI: 0.14 to 1.39), exercise (pooled SMD = 0.60, 95% CI: 0.08 to 1.11), and physical therapy (pooled SMD = 0.47, 95% CI: 0.02-0.92) demonstrated statistically substantial effectiveness compared with the control group. The rank probability indicated that mind body therapy achieved the highest effectiveness in reducing depression and anxiety among patients with CLBP. Besides, the combined results should be interpreted cautiously based on the results of analyses evaluating the inconsistency and certainty of the evidence. CONCLUSION: This systemic review and NMA suggested that nonpharmacological interventions show promise for reducing psychological symptoms among patients with CLBP. In particular, mind body therapy and a biopsychosocial approach show considerable promise, and mind body therapy can be considered a priority choice in reducing depression and anxiety. These findings can aid clinicians in assessing the potential risks and benefits of available treatments for CLBP comorbidity with psychological symptoms and provide evidence for selecting interventions in clinical practice. More RCTs involving different interventions with rigorous methodology and an adequate sample size should be conducted in future research.


Subject(s)
Low Back Pain , Humans , Low Back Pain/therapy , Anxiety/etiology , Anxiety/therapy , Comorbidity , Quality of Life
20.
Tissue Eng Part C Methods ; 30(2): 73-84, 2024 02.
Article in English | MEDLINE | ID: mdl-37930732

ABSTRACT

Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and several studies have evaluated the efficacy of extracellular vesicles (EVs) in the treatment of IVDD. The databases PubMed, Embase, and Cochrane Library were systematically searched from inception to the end of 2022 to identify studies investigating the therapeutic potential of cell-derived EVs for IVDD treatment. The following outcome measures were utilized: magnetic resonance imaging (MRI) Pfirrmann grading system, disc height index (DHI), histological grading, and apoptosis rate. A comprehensive meta-analysis was conducted, including a total of 13 articles comprising 19 studies involving 218 experimental animals. Comparative analysis between normal cell-derived EVs and placebo revealed significant reductions in MRI grade, increased DHI values, decreased nucleus pulposus cell apoptosis rates, and improved tissue grades. These findings collectively demonstrate the effective inhibition of IVDD through the application of EVs derived from cells. In conclusion, this study provides an updated synthesis of evidence supporting the efficacy of EVs as a promising therapeutic approach for IVDD treatment.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Magnetic Resonance Imaging , Apoptosis , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology
SELECTION OF CITATIONS
SEARCH DETAIL