Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 430
Filter
1.
BMC Med ; 22(1): 201, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764043

ABSTRACT

BACKGROUND: Lipid-lowering drugs and antihypertensive drugs are commonly combined for cardiovascular disease (CVD). However, the relationship of combined medications with CVD remains controversial. We aimed to explore the associations of genetically proxied medications of lipid-lowering and antihypertensive drugs, either alone or both, with risk of CVD, other clinical and safety outcomes. METHODS: We divided 423,821 individuals in the UK Biobank into 4 groups via median genetic scores for targets of lipid-lowering drugs and antihypertensive drugs: lower low-density lipoprotein cholesterol (LDL-C) mediated by targets of statins or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, lower systolic blood pressure (SBP) mediated by targets of ß-blockers (BBs) or calcium channel blockers (CCBs), combined genetically lower LDL-C and SBP, and reference (genetically both higher LDL-C and SBP). Associations with risk of CVD and other clinical outcomes were explored among each group in factorial Mendelian randomization. RESULTS: Independent and additive effects were observed between genetically proxied medications of lipid-lowering and antihypertensive drugs with CVD (including coronary artery disease, stroke, and peripheral artery diseases) and other clinical outcomes (ischemic stroke, hemorrhagic stroke, heart failure, diabetes mellitus, chronic kidney disease, and dementia) (P > 0.05 for interaction in all outcomes). Take the effect of PCSK9 inhibitors and BBs on CVD for instance: compared with the reference, PCSK9 group had a 4% lower risk of CVD (odds ratio [OR], 0.96; 95%CI, 0.94-0.99), and a 3% lower risk was observed in BBs group (OR, 0.97; 95%CI, 0.94-0.99), while combined both were associated with a 6% additively lower risk (OR, 0.94; 95%CI, 0.92-0.97; P = 0.87 for interaction). CONCLUSIONS: Genetically proxied medications of combined lipid-lowering and antihypertensive drugs have an independent and additive effects on CVD, other clinical and safety outcomes, with implications for CVD clinical practice, subsequent trials as well as drug development of polypills.


Subject(s)
Antihypertensive Agents , Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Antihypertensive Agents/therapeutic use , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Male , Female , Hypolipidemic Agents/therapeutic use , Middle Aged , Aged , Genetic Variation , United Kingdom/epidemiology , Drug Therapy, Combination , Blood Pressure/drug effects
2.
Angew Chem Int Ed Engl ; : e202403189, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701048

ABSTRACT

Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning µ-XRD computed tomography to scrutinize Ni-rich layered LiNi0.6Co0.2Mn0.2O2 (NCM622) and Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of µ-XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long-term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain-induced structural degradation during high-voltage cycling, resulting in significant voltage decay and capacity fade. This work holds the potential to fine-tune the microstructure of advanced layered materials and manipulate composite electrode construction in order to enhance the performance of LIBs and beyond.

3.
Eur Urol Oncol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762368

ABSTRACT

BACKGROUND AND OBJECTIVE: Combinations of immune checkpoint inhibitors and nab-paclitaxel have achieved significant therapeutic effects in the treatment of advanced urothelial carcinoma. Our aim was to assess the efficacy and safety of tislelizumab combined with low-dose nab-paclitaxel in patients with muscle-invasive bladder cancer (MIBC). METHODS: TRUCE-01 was a single-arm phase 2 study that included 62 patients with T2-4a N0/X M0 MIBC tumors with predominant urothelial carcinoma histology. Eligible patients received three 21-d cycles of intravenous 200 mg tislelizumab on day 1 plus intravenous 200 mg nab-paclitaxel on day 2, followed by surgical assessment. The primary study endpoint was a clinical complete response (cCR). Treatment-related adverse event (TRAE) profiles were recorded according to Common Terminology Criteria for Adverse Events version 5.0. KEY FINDINGS AND LIMITATIONS: The safety analysis included all 62 patients and the efficacy analysis included 48 patients. The primary efficacy endpoint (cCR) was met by 25 patients (52%) patients. Among the 62 patients in the safety analysis, six (9.7%) had grade ≥3 TRAEs. CONCLUSIONS: Tislelizumab combined with low-dose nab-paclitaxel showed promising antitumor effectiveness and was generally well tolerated, which makes it an excellent preoperative therapy option for MIBC. PATIENT SUMMARY: We found that a combination of the drugs tislelizumab and low-dose nab-paclitaxel had satisfactory efficacy and safety for preoperative treatment of muscle-invasive bladder cancer.

4.
PLoS One ; 19(5): e0303235, 2024.
Article in English | MEDLINE | ID: mdl-38728287

ABSTRACT

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Subject(s)
Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Neurons/metabolism , Rats , Galectin 3/metabolism , Galectin 3/genetics , Rats, Sprague-Dawley , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics , Protein Interaction Maps , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics
5.
Heliyon ; 10(7): e28048, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560150

ABSTRACT

Background: In the realm of tumor-targeted therapeutics, Polo-like kinases (PLKs) are a significant group of protein kinases that were found recently as being related to tumors. However, the significance of PLKs in pan-cancer remains systematically studied. Methods and materials: We integrated multi-omics data to comprehensively investigate the expression patterns of the PLK family across various cancer types. Subsequently, study examined the associations between tumor mutation burden (TMB), microsatellite instability (MSI), immune subtype classification, immune infiltration, tumor microenvironment scores, immune checkpoint gene expression, and the PLKs expression profiles within various tumor types. Furthermore, using our mRNA sequencing data (TRUCE01) and four bladder cancer (BLCA) cohorts (GSE111636, GSE176307, and IMvigor210), We examined the correlation between the expression level of PLK and immunotherapy effectiveness. Next, Gene set enrichment analysis (GSEA) was evaluated to find that potentially enriched PLK signaling pathways. Utilizing TIMER 2.0, we conducted an immune infiltration analysis underlying transcriptome expression, copy number variations (CNV), or somatic mutations of PLKs in BLCA. Finally, mRNA expression validation of PLK1/3/4 by real-time PCR within 10 paired BLCA tissues, protein expression verification through the Human Protein Atlas (HPA), and PLK4 in vitro cytological studies have been employed in BLCA. Results: The expression of most of the PLK family members exhibits variation between cancerous tissues and adjacent normal tissues across various cancer species. Furthermore, the expression of PLKs demonstrates a significant association with immunotyping, infiltration of immune cell, tumor mutational burden (TMB), microsatellite instability (MSI), immunological checkpoint gene activity and therapeutic effectiveness in pan-tumor tissues. Additional investigation into the correlation between the PLK family and BLCA has revealed that the expression of the PLK genes holds substantial significance in the biological processes of BLCA. Furthermore, a notable association has been observed between the copy number variation, variant status, and the degree of certain immunological cell infiltration. Of note, the expression validation and in vitro phenotypic experiments have demonstrated that PLK4 has a significant function in promoting the BLCA cell proliferation, migration, and invasion. Conclusion: Collectively, based on various databases, our results highlight the involvement of PLK gene family in the formation of different types of tumors and identify PLK-related genes that may be used for therapy.

6.
Sci Prog ; 107(2): 368504241232537, 2024.
Article in English | MEDLINE | ID: mdl-38567422

ABSTRACT

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Carcinoma/diagnostic imaging , Epithelium , Neck
7.
Environ Int ; 186: 108626, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626493

ABSTRACT

The relationship of fine particulate matter (PM2.5) exposure and insulin resistance remains inclusive. Our study aimed to investigate this association in the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR). Specifically, we examined the associations between long-term PM2.5 exposure and three surrogate indicators of insulin resistance: the triglyceride-glucose index (TyG), TyG with waist circumference (TyG-WC) and metabolic score for insulin resistance (METS-IR). Additionally, we explored potential effect modification of dietary intake and components. Generalized estimating equations were used to evaluate the associations between PM2.5 and the indicators with an unbalanced repeated measurement design. Our analysis incorporated a total of 162,060 observations from 99,329 participants. Each 10 µg/m3 increment of PM2.5 was associated with an increase of 0.22 % [95 % confidence interval (CI): 0.20 %, 0.25 %], 1.60 % (95 % CI: 1.53 %, 1.67 %), and 2.05 % (95 % CI: 1.96 %, 2.14 %) in TyG, TyG-WC, and METS-IR, respectively. These associations were attenuated among participants with a healthy diet, particularly those with sufficient intake of fruit and vegetable, fish or tea (pinteraction < 0.0028). For instance, among participants with a healthy diet, TyG increased by 0.11 % (95 % CI: 0.08 %, 0.15 %) per 10 µg/m3 PM2.5 increment, significantly lower than the association observed in those with an unhealthy diet. The findings of this study emphasize the potential of a healthy diet to mitigate these associations, highlighting the urgency for improving air quality and implementing dietary interventions among susceptible populations in China.


Subject(s)
Environmental Exposure , Insulin Resistance , Particulate Matter , Particulate Matter/analysis , Humans , Male , Middle Aged , China , Female , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Adult , Diet/statistics & numerical data , Aged , Blood Glucose/analysis , Triglycerides/blood
8.
JMIR Public Health Surveill ; 10: e48947, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578689

ABSTRACT

BACKGROUND: Osteopenia and osteoporosis are posing a long-term influence on the aging population's health contributing to a higher risk of mortality, loss of autonomy, hospitalization, and huge health system costs and social burden. Therefore, more pertinent data are needed to demonstrate the current state of osteoporosis. OBJECTIVE: This sampling survey seeks to assess the trends in the prevalence of osteopenia and osteoporosis in a Chinese Han population. METHODS: A community-based cross-sectional study involving 16,377 participants used a multistage sampling method. Bone mineral density was measured using the quantitative ultrasonic densitometry. Student t test and Mann-Whitney U test were used to test the difference between normally and nonnormally distributed quantitative variables between male and female participants. A chi-square (χ2) test was used to compare categorized variables. Stratified analysis was conducted to describe the prevalence rates of osteoporosis (T score ≤-2.5) and osteopenia (T score -2.5 to -1.0) across age, sex, calcium intake, and menopause. A direct standardization method was used to calculate the age-standardized prevalence rates of osteoporosis and osteopenia. T-score was further categorized into quartiles (T1-T4) by age- and sex-specified groups. RESULTS: The prevalence rates of osteopenia and osteoporosis were 40.5% (6633/16,377) and 7.93% (1299/16,377), respectively, and the age-standardized prevalence rates were 27.32% (287,877,129.4/1,053,861,940) and 3.51% (36,974,582.3/1,053,861,940), respectively. There was an increase in osteopenia and osteoporosis prevalence from 21.47% (120/559) to 56.23% (754/1341) and 0.89% (5/559) to 17.23% (231/1341), respectively, as age increased from 18 years to 75 years old. The prevalence rates of osteopenia and osteoporosis were significantly higher in female participants (4238/9645, 43.94% and 1130/9645, 11.72%) than in male participants (2395/6732, 35.58% and 169/6732, 2.51%; P<.001), and in postmenopausal female participants (3638/7493, 48.55% and 1053/7493, 14.05%) than in premenopausal female participants (538/2026, 26.55% and 53/2026, 2.62%; P<.001). In addition, female participants with a history of calcium intake had a lower osteoporosis prevalence rate than female participants without any history of calcium intake in all age groups (P=.004). From low quartile to high quartile of T-score, the prevalence of diabetes mellitus (752/4037, 18.63%; 779/4029, 19.33%; 769/3894, 19.75%; and 869/3879, 22.4%) and dyslipidemia (2228/4036, 55.2%; 2304/4027, 57.21%; 2306/3891, 59.26%; and 2379/3878, 61.35%) were linearly increased (P<.001), while the prevalence of cancer (112/4037, 2.77%; 110/4029, 2.73%; 103/3894, 2.65%; and 77/3879, 1.99%) was decreased (P=.03). CONCLUSIONS: Our data imply that as people age, osteopenia and osteoporosis are more common in females than in males, particularly in postmenopausal females than in premenopausal females, and bone mineral density significantly affects the prevalence of chronic diseases. These findings offer information that can be applied to intervention programs meant to prevent or lessen the burden of osteoporosis in China.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Male , Female , Humans , Aged , Adolescent , Calcium , Cross-Sectional Studies , Prevalence , Osteoporosis/epidemiology , Bone Diseases, Metabolic/epidemiology , Age Factors
9.
Microorganisms ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674783

ABSTRACT

The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.

10.
Chem Commun (Camb) ; 60(30): 4100-4103, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38516825

ABSTRACT

Through metal-site anchoring, metal-organic frameworks (MOFs) were modified with ionic liquids (ILs) and used as a porous filler to prepare mixed-matrix membranes (MMMs). The targeted growth of the IL exposed more active sites and greatly enhanced CO2 transfer in the MMMs, which exhibited excellent gas separation performance and long durability.

11.
Sleep Breath ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308751

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) can be considered a chronic inflammatory disease that impacts all bodily systems, including the immune system. This study aims to assess the Th17/Treg pattern in patients with OSA and the effect of continuous positive airway pressure (CPAP) treatment. METHODS: OSA patients and healthy controls were recruited. OSA patients recommended for CPAP treatment were followed up for three months. Flow cytometry was employed to determine the proportion of Th17 and Treg cells. Real-time quantitative polymerase chain reaction (PCR) and western blotting were utilized to detect the mRNA and protein levels of receptor-related orphan receptor γt (RORγt) and forkhead/winged helix transcription factor (Foxp3), respectively, in peripheral blood mononuclear cells (PBMCs). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the serum levels of interleukin-17 (IL-17), IL-6, transforming growth factor-ß1 (TGF-ß1), and hypoxia-induced factor-1α (HIF-1α). RESULTS: A total of 56 OSA patients and 40 healthy controls were recruited. The proportion of Th17 cells, Th17/Treg ratio, mRNA and protein levels of RORγt, and serum IL-17, IL-6, and HIF-1α levels were higher in OSA patients. Conversely, the proportion of Treg cells, mRNA and protein levels of Foxp3, and serum TGF-ß1 levels were decreased in OSA patients. The proportion of Th17 and Treg cells in OSA can be predicted by the apnea hypopnea index (AHI), IL-6, TGF-ß1 and, HIF-1α. 30 moderate-to-severe OSA patients were adherent to three-month CPAP treatment, with improved Th17/Treg imbalance, IL-17, IL-6, TGF-ß1, and HIF-1α levels compared to pre-treatment values. CONCLUSION: There was a Th17/Treg imbalance in OSA patients. The prediction of Th17 and Treg cell proportions in OSA can be facilitated by AHI, as well as serum IL-6, TGF-ß1, and HIF-1α levels. Furthermore, CPAP treatment can potentially improve the Th17/Treg imbalance and reduce proinflammatory cytokines in OSA patients.

12.
Heliyon ; 10(4): e25841, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370169

ABSTRACT

Purpose: To assess the impact of the COVID-19 pandemic on a worldwide private ophthalmic practice. Design: In this retrospective study, we reviewed the 2020 monthly outpatient and surgical volume of refractive, cataract, and retinal disease in Aier Eye clinics/hospitals of different regions, including the United States, Germany, Spain, Italy, and six major cities in China (Wuhan, Beijing, Shanghai, Shenyang, Urumqi and Yili). All of these data were compared to those of the same period of 2019. Results: Overall, during the early stage (2020 January to 2020 April) of COVID-19 outbreak, the outpatient and surgical volume of three main type ocular diseases (refractive, cataract and retinal surgery) showed an obvious reduction and reached the bottom in February in China. The data from the United States, Germany, Spain and Italy revealed the same trend, but the visit count nadir occurred until April, which is consistent with the spread trend of COVID-19 disease around the world. The average change rates of surgery volume (refractive, cataract and retinal surgery) in Chinese centers are 5.59%, -26.38%, 11.76%. The change rates of refractive (REF) and cataract volumes (CAT) in the United States are -8.62% and -10.58%, in Germany are -13.71% and -20.49%, in Spain are 15.35% and 27.97%, in Italy are 30.43% and -22.64%. In addition, the optometry outpatient volumes keep going up since May, with an average increasing rate of 21.18%, ranging from 7.43% to 49.51%. Conclusion: In conclusion, in this global chain of eye care units, the visit volumes of cataract, retinal and refractive changed significantly with the spread of COVID-19 pandemic. Among them, cataract surgery was the most affected sub-specialty, and refractive surgery and optometry volumes showed a potential growth in the near future. Therefore, medical institutions should make corresponding adjustments to the disease diagnosis and treatment strategies.

13.
Micromachines (Basel) ; 15(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38398966

ABSTRACT

The integration of micro-electro-mechanical system-inertial navigation systems (MEMS-INSs) with other autonomous navigation sensors, such as polarization compasses (PCs) and geomagnetic compasses, has been widely used to improve the navigation accuracy and reliability of vehicles in Internet of Things (IoT) applications. However, a MEMS-INS/PC integrated navigation system suffers from cumulative errors and time-varying measurement noise covariance in unknown, complex occlusion, and dynamic environments. To overcome these problems and improve the integrated navigation system's performance, a dual data- and model-driven MEMS-INS/PC seamless navigation method is proposed. This system uses a nonlinear autoregressive neural network (NARX) based on the Gauss-Newton Bayesian regularization training algorithm to model the relationship between the MEMS-INS outputs composed of the specific force and angular velocity data and the PC heading's angular increment, and to fit the integrated navigation system's dynamic characteristics, thus realizing data-driven operation. In the model-driven part, a nonlinear MEMS-INS/PC loosely coupled navigation model is established, the variational Bayesian method is used to estimate the time-varying measurement noise covariance, and the cubature Kalman filter method is then used to solve the nonlinear problem in the model. The robustness and effectiveness of the proposed method are verified experimentally. The experimental results show that the proposed method can provide high-precision heading information stably in complex, occluded, and dynamic environments.

14.
Article in English | MEDLINE | ID: mdl-38290937

ABSTRACT

OBJECTIVE: Obstructive sleep apnea (OSA) is associated with impaired cognitive function. Exosomes are secreted by most cells and play a role in OSA-associated cognitive impairment (CI). The aim of this study was to investigate whether OSA plasma-derived exosomes cause CI through hippocampal neuronal cell pyroptosis, and to identify exosomal miRNAs in OSA plasma-derived. MATERIALS AND METHODS: Plasma-derived exosomes were isolated from patients with severe OSA and healthy comparisons. Daytime sleepiness and cognitive function were assessed using the Epworth Sleepiness Scale (ESS) and the Beijing version of the Montreal Cognitive Assessment Scale (MoCA). Exosomes were coincubated with mouse hippocampal neurons (HT22) cells to evaluate the effect of exosomes on pyroptosis and inflammation of HT22 cells. Meanwhile, exosomes were injected into C57BL/6 male mice via caudal vein, and then morris water maze was used to evaluate the spatial learning and memory ability of the mice, so as to observe the effects of exosomes on the cognitive function of the mice. Western blot and qRT-PCR were used to detect the expressions of Gasdermin D (GSDMD) and Caspase-1 to evaluate the pyroptosis level. The expression of IL-1ß, IL-6, IL-18 and TNF-α was detected by qRT-PCR to assess the level of inflammation. Correlations of GSDMD and Caspase-1 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. In addition, plasma exosome miRNAs profile was identified, followed by Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS: Compared to healthy comparisons, body mass index (BMI), apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and ESS scores were increased in patients with severe OSA, while lowest oxygen saturation during sleep (LSaO2), mean oxygen saturation during sleep (MSaO2) and MoCA scores were decreased. Compared to the PBS group (NC) and the healthy comparison plasma-derived exosomes (NC-EXOS), the levels of GSDMD and Caspase-1 and IL-1ß, IL-6, IL-18 and TNF-α were increased significantly in the severe OSA plasma-derived exosomes (OSA-EXOS) coincubated with HT22 cells. Compared to the NC and NC-EXOS groups, the learning and memory ability of mice injected with OSA-EXOS was decreased, and the expression of GSDMD and Caspase-1 in hippocampus were significantly increased, along with the levels of IL-1ß, IL-6, IL-18 and TNF-α. Spearman correlation analysis found that clinical AHI in HCs and severe OSA patients was positively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups, while negatively correlated with clinical MoCA. At the same time, clinical MoCA in HCs and severe OSA patients was negatively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups. A unique exosomal miRNAs profile was identified in OSA-EXOS group compared to the NC-EXOS group, in which 28 miRNAs were regulated and several KEGG and GO pathways were identified. CONCLUSIONS: The results of this study show a hypothesis that plasma-derived exosomes from severe OSA patients promote pyroptosis and increased expression of inflammatory factors in vivo and in vitro, and lead to impaired cognitive function in mice, suggesting that OSA-EXOS can mediate CI through pyroptosis of hippocampal neurons. In addition, exosome cargo from OSA-EXOS showed a unique miRNAs profile compared to NC-EXOS, suggesting that plasma exosome associated miRNAs may reflect the differential profile of OSA related diseases, such as CI.

15.
JAMA Cardiol ; 9(3): 233-242, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38198131

ABSTRACT

Importance: The genetic basis of coronary heart disease (CHD) has expanded from a germline to somatic genome, including clonal hematopoiesis of indeterminate potential (CHIP). How CHIP confers CHD risk in East Asian individuals, especially those with small clones (variant allele fraction [VAF] 0.5%-2%) and different genetic backgrounds, was completely unknown. Objective: To investigate the CHIP profile in a general Chinese cohort by deep sequencing and further explore the association between CHIP and incident CHD considering germline predisposition. Design, Setting, and Participants: This cohort study used data from 3 prospective cohorts in the project Prediction for Atherosclerotic Cardiovascular Disease Risk in China. Participants without cardiovascular disease or cancer at baseline were enrolled in 2001 and 2008 and had a median follow-up of 12.17 years extending into 2021. Exposures: CHIP mutations were detected by targeted sequencing (mean depth, 916×). A predefined CHD polygenic risk score (PRS) comprising 531 variants was used to evaluate germline predisposition. Main Outcomes and Measures: The main outcome was first incident CHD. Results: Among 6181 participants, the median (IQR) age was 53.83 years (45.35-62.39 years); 3082 participants (49.9%) were female, and 3099 (50.1%) were male. A total of 1100 individuals (17.80%) harbored 1372 CHIP mutations at baseline. CHIP was independently associated with incident CHD (hazard ratio [HR], 1.42; 95% CI, 1.18-1.72; P = 2.82 × 10-4) and presented a risk gradient with increasing VAF (P = 3.98 × 10-3 for trend). Notably, individuals with small clones, nearly half of CHIP carriers, also demonstrated a higher CHD risk compared with non-CHIP carriers (HR, 1.33; 95% CI, 1.02-1.74; P = .03) and were 4 years younger than those with VAF of 2% or greater (median age, 58.52 vs 62.70 years). Heightened CHD risk was not observed among CHIP carriers with low PRS (HR, 1.02; 95% CI, 0.64-1.64; P = .92), while high PRS and CHIP jointly contributed a 2.23-fold increase in risk (95% CI, 1.51-3.29; P = 6.29 × 10-5) compared with non-CHIP carriers with low PRS. Interestingly, the diversity in CHIP-related CHD risk within each PRS group was substantially diminished when removing variants in the inflammatory pathway from the PRS. Conclusions: This study revealed that elevated CHD risk attributed to CHIP was nonnegligible even for small clones. Inflammation genes involved in CHD could aggravate or abrogate CHIP-related CHD risk.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Male , Humans , Female , Middle Aged , Coronary Artery Disease/epidemiology , Clonal Hematopoiesis , Cohort Studies , Prospective Studies , Germ Cells
16.
Appl Opt ; 63(2): 525-534, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227250

ABSTRACT

Sky-bionic polar co-ordinate navigation is an effective means of providing navigational information in the absence of a priori information. Polar co-ordinate navigation during clear daytime conditions has been studied, but there has been a lack of research of it at night due to problems with noise. Therefore, in this paper, a short-wave infrared polarimetric sensor system is designed, which is capable of acquiring atmospheric polarimetric information in low illumination environments at night, compared with traditional visible band sensors. Additionally, based on the statistics of polarization angle information, an algorithm for removing noise and starlight is proposed to solve the influence of starlight and noise on the polarization information at night. After many outdoor experiments, we found that the method can output the heading angle stably and accurately, and its standard deviation is controlled to be 0.42° in a clear night.

17.
Bioresour Technol ; 393: 130080, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993068

ABSTRACT

Rhamnolipids can serve as a precursor for rhamnose production, but using ion exchange resin in purifying rhamnolipids hydrolysate results in excessive high-salinity wastewater, making the process environmentally and economically unfeasible. This study introduced electrodialysis technology as an alternative for purifying rhamnolipids hydrolysate, significantly reducing wastewater to less than 5 % compared to the resin method. To achieve zero wastewater discharge, the electrodialysis-treated wastewater was repurposed into a water-soluble fertilizer containing 7.1 g/L of rhamnolipids, 11.4 g/L of fatty acid, 2.4 g/L of amino acid, and 8.2 g/L of potassium. Unlike traditional fertilizers, the nutritional components with rhamnolipids showed remarkable potential in enhancing tomato plant growth, flowering, and fruit quality. Taken together, the electrodialysis treatment of rhamnolipids hydrolysate largely reduced the water volume, the economic cost, and took a full use of the final wastewater as efficient water-soluble fertilizers, making it applicable for large-scale rhamnose production.


Subject(s)
Fertilizers , Wastewater , Rhamnose , Glycolipids
18.
Med Sci Sports Exerc ; 56(1): 103-109, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37703277

ABSTRACT

PURPOSE: Whether the association of sedentary behaviors with coronary artery disease (CAD) can be influenced by genetic susceptibility remains unclear. We aimed to investigate the joint and interplay effects between genetic risk and sedentary time (ST) and to further explore the extent to which the risk for CAD can be counteracted by reducing ST in different genetic groups. METHODS: This prospective cohort study included 39,164 Chinese adults without CAD history. Genetic susceptibility was quantified by a predefined polygenic risk score (PRS) with 540 genetic variants, and daily ST was assessed by questionnaire. We analyzed the modification effect of genetic risk on the association of ST with CAD using the Cox proportional hazards models. RESULTS: During a median follow-up of 11.60 yr, 1156 CAD events were documented. Higher ST and PRS were separately related to elevated CAD risk. Significant additive interaction was also observed (relative excess risk due to interaction: 0.77; 95% confidence interval [CI] = 0.27-1.28). Compared with participants with low genetic risk and low ST (<6 h·d -1 ), those with high genetic risk and high ST (≥10 h·d -1 ) had the highest CAD risk, with the hazard ratio (HR) and 95% CI of 4.22 (2.65-6.71). When stratified by genetic risks, participants with high ST had gradient increment of CAD risks across low, intermediate, and high genetic risk groups, with HR (95% CI) values of 1.21 (0.61-2.40), 1.57 (1.14-2.16), and 2.15 (1.40-3.31), respectively. For the absolute risk reduction, individuals with high genetic risk achieved the greatest benefit from low ST ( Ptrend = 0.024). CONCLUSIONS: Genetic susceptibility may synergistically interact with ST to increase CAD risk. Reducing ST could attenuate the CAD risk, especially among individuals with high genetic risk.


Subject(s)
Coronary Artery Disease , Adult , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Prospective Studies , Sedentary Behavior , Cohort Studies , Genetic Predisposition to Disease , Risk Factors , China/epidemiology
19.
Zygote ; 32(1): 1-6, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018398

ABSTRACT

The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.


Subject(s)
Diet, High-Fat , Histones , Humans , Male , Animals , Mice , Histones/genetics , Histones/metabolism , Diet, High-Fat/adverse effects , Lysine/metabolism , Obesity/genetics , Embryonic Development
20.
Stroke ; 55(1): 92-100, 2024 01.
Article in English | MEDLINE | ID: mdl-38018834

ABSTRACT

BACKGROUND: Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS: This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS: Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS: Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.


Subject(s)
Air Pollutants , Air Pollution , Atrial Fibrillation , Diabetes Mellitus, Type 2 , Stroke , Adult , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Prospective Studies , Atrial Fibrillation/complications , Genome-Wide Association Study , Environmental Exposure/adverse effects , Incidence , Stroke/epidemiology , Stroke/genetics , Stroke/chemically induced , Air Pollution/adverse effects , Risk Factors , Genetic Predisposition to Disease , Triglycerides , Air Pollutants/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...