Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38174926

ABSTRACT

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Subject(s)
Capsid Proteins , Enterovirus A, Human , Enterovirus Infections , RNA-Dependent RNA Polymerase , Animals , Mice , Antibodies, Viral/immunology , Codon , Enterovirus A, Human/genetics , Enterovirus Infections/immunology , Vaccines, Attenuated , Capsid Proteins/genetics , Immunity, Humoral , Immunity, Cellular , Antibodies, Neutralizing/immunology , Viral Vaccines , Mice, Inbred ICR , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics
2.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215957

ABSTRACT

Enterovirus genus has over one hundred genotypes and could cause several kinds of severe animal and human diseases. Understanding the role of conserved residues in the VP1 capsid protein among the enterovirus genus may lead to anti-enteroviral drug development. The highly conserved residues were found to be located at the loop and ß-barrel intersections. To elucidate the role of these VP1 residues among the enterovirus genus, alanine substitution reverse genetics (rg) variants were generated, and virus properties were investigated for their impact. Six highly conserved residues were identified as located near the inside of the canyon, and four of them were close to the ß-barrel and loop intersection. The variants rgVP1-R86A, rgVP1-P193A, rgVP1-G231A, and rgVP1-K256A were unable to be obtained, which may be due to disruption in the virus replication process. In contrast, rgVP1-E134A and rgVP1-P157A replicated well and rgVP1-P157A showed smaller plaque size, lower viral growth kinetics, and thermal instability at 39.5°C when compared to the rg wild type virus. These findings showed that the conserved residues located at the ß-barrel and loop junction play roles in modulating viral replication, which may provide a pivotal role for pan-enteroviral inhibitor candidate.


Subject(s)
Capsid Proteins/chemistry , Enterovirus/physiology , Virus Replication , Amino Acid Sequence , Antiviral Agents/chemistry , Capsid Proteins/genetics , Cell Line, Tumor , Conserved Sequence , Humans , Mutation , Protein Conformation , Protein Stability , RNA, Viral/metabolism , Small Molecule Libraries/chemistry , Temperature , Viral Load
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 22(4): 687-8, 2002 Aug.
Article in Chinese | MEDLINE | ID: mdl-12938401

ABSTRACT

A enhancement method of FAAS with emulsion as enhancement agent has been developed. The enhancement effect of emulsion made of three organic solvents (benzene, benzene-propanone, xylene), one organic reagent (dibutyl phthalate) and three emulsifiers (Tween-80, Triton X-100, OP) for iron, nickel, zinc, manganese and lead was studied. The results indicated that the enhancement is satisfactory. The emulsion with maximum enhancement percentage are respectively emulsion of benzene-OP-dibutyl phthalate with 89%, emulsion of xylene-Trition-100-dibutyl phthal with 34%, emulsion of benzene-Trition-100 with 121%, emulsion of benzene-Trition-100-dibutyl phthalate with 38% and 69% in sequence of the above elements.


Subject(s)
Benzene , Dibutyl Phthalate , Emulsions , Trace Elements/analysis , Iron/analysis , Nickel/analysis , Octoxynol , Polysorbates , Sensitivity and Specificity , Spectrophotometry, Atomic/methods , Surface-Active Agents , Xylenes , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...