Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Environ Sci Technol ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291786

ABSTRACT

Exposure to the indoor airborne microbiome is closely related to the air that individuals breathe. However, the floor dust-borne microbiome is commonly used as a proxy for indoor airborne microbiome, and the spatial distribution of indoor airborne microbiome is less well understood. This study aimed to characterize indoor airborne microorganisms at varying heights and compare them with those in floor dust. An assembly of three horizontally and three vertically positioned Petri dishes coated with mineral oil was applied for passive air sampling continuously at three heights without interruption. The airborne microbiomes at the three different heights showed slight stratification and differed significantly from those found in the floor dust. Based on the apportionment results from the fast expectation-maximization algorithm (FEAST), shoe sole dust contributed approximately 4% to indoor airborne bacteria and 14% to airborne fungi, a contribution that is comparable to that from the floor dust-borne microbiome. The results indicated that floor dust may not be a reliable proxy for indoor airborne microbiome. Moreover, the study highlights the need for height-resolved studies of indoor airborne microbiomes among humans in different activity modes and life states. Additionally, shoe sole-dust-associated microorganisms could potentially be a source to "re-wild" the indoor microbiota.

2.
Environ Sci Technol ; 58(32): 14329-14337, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39088742

ABSTRACT

A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.


Subject(s)
Ozone , Toluene , Toluene/chemistry , Catalysis , Ozone/chemistry , Ferric Compounds/chemistry , Manganese/chemistry , Gases/chemistry , Oxides/chemistry , Nitrogen Oxides/chemistry , Oxidation-Reduction
3.
Sci Total Environ ; 926: 171879, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521271

ABSTRACT

Bacteria and fungi are ubiquitous throughout built environments and are suspended in the air, potentially affecting human health. However, the impacts of climate zones on the diversity, structure, and stochastic assembly of indoor airborne microbes remain unknown. This study comprehensively analyzed indoor airborne microbes across five climate zones in China during the summer and winter using high-throughput sequencing. The diversity and structure of indoor airborne communities vary across climatic zones. A random forest model was used to identify biomarkers in different climate zones. The results showed no relationship between the biomarkers and their rankings in mean relative abundance. The Sloan neutral model fitting results indicated that the impact of climate zones on the stochastic process in the assembly of indoor airborne microbes was considerably more important than that of seasons. Additionally, the influence of seasons on the diversity, structure, and stochastic assembly process of indoor airborne microbes differed among different climate zones. The diversity, structure, and stochastic assembly processes of bacteria present distinctive outcomes in climate zones and seasons compared with those of fungi. Overall, these findings indicate that customized strategies are necessary to manage indoor airborne microbial communities in each climate zone, season, and for specific microbial species.


Subject(s)
Air Pollution, Indoor , Microbiota , Humans , Seasons , Fungi , Bacteria , Air Microbiology , Biomarkers , Air Pollution, Indoor/analysis
4.
Environ Sci Technol ; 57(48): 20053-20063, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37936384

ABSTRACT

Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.


Subject(s)
Ozone , Volatile Organic Compounds , Toluene/chemistry , Oxides , Oxygen , Catalysis
5.
J Hazard Mater ; 448: 130900, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36731324

ABSTRACT

Although free hydroxyl radical (·OH) generated on OMS-2-based catalysts during the catalytic ozonation process have been shown as important reactive oxygen species (ROSs) for toluene degradation, improvement of surface ·OH formation ability remains challenging. Here, Na, K, Rb, and Cs-OMS-2-SO42-/ZSM-5 catalysts were prepared, characterized and evaluated for catalytic ozonation of toluene. Both characterizations and DFT calculations showed that the appropriate alkali metal introduction made the catalyst possess with appropriate crystalline, reducibility, and acidity, which was favorable for catalytic ozonation of toluene. Characterizations also showed that alkali metal introduction resulted in water molecule adsorption on Brönsted acid sites of the catalysts, which made water molecule activation by ozone to form ·OH more easily. The introduction of K+ content of ∼ 5.9 wt% yielded K-OMS-2-SO42-/ZSM-5 catalyst with the highest Brönsted acid sites and thus formed the most ·OH among the five prepared catalysts. As a result, the catalyst exhibited excellent toluene conversion and COx selectivity for catalytic ozonation of toluene at room temperature and ambient humidity. Furthermore, the catalytic activity of deactivated K-OMS-2-SO42-/ZSM-5 catalyst was recovered after regeneration by a combination of water washing and heat treatment. Finally, a complete mechanism for toluene catalytic ozonation, catalyst deactivation, and regeneration was proposed.

6.
Chemosphere ; 315: 137679, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586443

ABSTRACT

The heat desorption of styrene from adsorbents is impracticable owing to its spontaneous polymerization under heating conditions. However, the feature also brings a potential promoting effect on styrene adsorption. Therefore, it is expected to develop the non-regenerative adsorbents with large adsorption capacity by strengthening the polymerization effect. In this work, C-Cl grafted silica gel adsorbents were prepared by introducing (Chloromethyl)dimethylchlorosilane (CMDMCS) and FeCl2 into silica gel. The C-Cl grafted silica gel exhibited excellent styrene adsorption performance, its adsorption amounts for styrene were 4.67 times and 9 times of unmodified silica gel under dry air condition and high humidity condition (RH = 80%), respectively. In addition, the adsorption of styrene on C-Cl grafted silica gel was almost unaffected by the presence of toluene. The characterization of adsorbents after styrene adsorption indicated that the improvement of adsorption capacity of C-Cl grafted silica gel for styrene can be attributed to atom transfer radical polymerization (ATRP) of styrene molecules on modified silica gel during adsorption process.


Subject(s)
Styrene , Toluene , Silica Gel , Adsorption , Silicon Dioxide
7.
Environ Sci Technol ; 56(22): 15695-15704, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36259958

ABSTRACT

Mn-based catalysts hold the promise of practical applications in catalytic ozonation of toluene at room temperature, yet improvement of toluene conversion and COx selectivity remains challenging. Here, an innovative α-MnO2/ZSM-5 catalyst modified with SO42- was successfully prepared, and both characterizations and density functional theory (DFT) calculations showed that SO42- introduction facilitated the formation of oxygen vacancies, Lewis and Brönsted acid sites, and active oxygen species and enhanced the adsorption ability of toluene on α-MnO2/ZSM-5. Characterizations also showed that SO42- introduction made the catalyst possess larger specific surface area, superior reducibility, and stronger surface acidity. As a result, α-MnO2/ZSM-5 with a S/Mn molar ratio of 0.019 exhibited the best toluene conversion and COx selectivity, 87 and 94%, respectively, after the reaction for 8 h at 30 °C under an initial concentration of 5 ppm toluene and 45 ppm ozone, relative humidity of 45%, and space velocity of 32,000 h-1, far superior to those of non-noble catalysts reported to date under comparable reaction conditions. The synergistic role of increased oxygen vacancies and acid sites of α-MnO2/ZSM-5 modified with SO42- resulted in excellent toluene conversion and COx selectivity. The findings represented a critical step toward the rational design and synthesis of highly efficient catalysts for catalytic ozonation of toluene.

8.
J Hazard Mater ; 436: 129208, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35739730

ABSTRACT

Adsorptive removal of gas phase low concentration macromolecular organic component, represented by naphthalene, from the enclosed space using ordered mesoporous carbon (OMC) has been studied by molecular simulation and experimental investigation. The simulation results indicated that both adsorption capacity and adsorption stability of the OMCs for naphthalene decreased with the increase of pore sizes from 2 nm to 8 nm. Characterizations showed that the prepared OMCs had the pore structure similar to the simulated OMCs except for the rough surface. In particular, the adsorption performance of the prepared OMCs was significantly lower than that of the simulated OMCs when pore size was 2 nm and 3 nm, which was attributed to the rough inner surface of these adsorbents, blocking the narrow pore channels and significantly reducing the pore volume. OMC with pore size of 4 nm had the highest adsorption amount for naphthalene. The co-adsorption experiments in the presence of both naphthalene and toluene, acetone or water showed the adsorption performance of OMCs for naphthalene were almost unaffected by the presence of low concentration toluene and acetone, as well as high relative humidity.

9.
Environ Sci Technol ; 56(10): 6282-6293, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35512288

ABSTRACT

Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.


Subject(s)
Air Pollution, Indoor , Microbiota , Air Pollution, Indoor/analysis , Bacteria/genetics , Dust/analysis , Fungi , Humans , Ventilation
10.
J Hazard Mater ; 434: 128925, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35460997

ABSTRACT

Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.


Subject(s)
Air Pollutants , Marine Toxins , Aerosols/analysis , Air Pollutants/analysis , Air Pollutants/toxicity , Atmosphere/analysis , Environmental Monitoring , Humans , Marine Toxins/analysis , Okadaic Acid/analysis , Seawater
11.
Environ Pollut ; 285: 117338, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34051562

ABSTRACT

Packaging is necessary for preserving and delivering products and has significant impacts on human health and the environment. Particle matter (PM) may be released from packages and transferred to the air during a typical peeling process, but little is known about this package-to-air migration route of particles. Here, we investigated the emission profiles of total and biological particles, and the horizontal and vertical dispersion abilities and community structure of viable microbes released from packaging to the air by peeling. The results revealed that a lot of inhalable particles and viable microbes were released from package to the air in different migration directions, and this migration can be regulated by several factors including package material, effective peeling area, peeling speed and angles, as well as the characteristics of the migrant itself. Dispersal of package-borne viable microbes provides direct evidence that viable microbes, including pathogens, can survive the aerosolization caused by peeling and be transferred to air over different distances while remaining alive. Based on the experimental data and visual proof in movies, we speculate that nonbiological particles are package fibers fractured and released to air by the external peeling force exerted on the package and that microbe dispersal is attributed to surface-borne microbe suspension by vibration caused by the peeling force. This investigation provides new information that aerosolized particles can deliver package-borne substances and viable microbes from packaging to the ambient environment, motivating further studies to characterize the health effects of such aerosolized particles and the geographic migration of microbes via packaging.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Product Packaging
12.
Sci Total Environ ; 764: 142908, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33139008

ABSTRACT

To understand the characteristics and potential impacts of fungal aerosols in waste disposal treatments, we performed observations at a landfill and an incineration plants in Guangzhou, Southern China. Size-segregated airborne fungal concentrations were measured based on culture-dependent method, and fungal compositions in PM2.5 were obtained using high-throughput sequencing method. Concentrations of airborne fungi varied from 376 to 9318 CFU/m3 in the landfill plant and from 53 to 8491 CFU/m3 in the incineration plant, respectively. The temporal and spatial variations of fungal aerosols indicate that waste disposal operation, garbage transport, air mixing, and meteorological factors can significantly influence the variations of airborne fungi in the outdoor environment in both plants. Among the meteorological factors, light/moderate rain could significantly increase the airborne fungal concentrations while heavy rain could decrease the concentrations due to wet scavenge. We observed that culturable fungal aerosols predominantly resided in the size range of 2.1-3.3 µm. Different fungal community structures in PM2.5 were found between the landfill and the incineration plants, suggesting the influence of different waste sorts and treatment procedures. We further identified the pathogenic/allergenic fungal taxa (e.g., Alternaria, Epicoccum sp. and Stachybotrys sp.) in the two plants, implying the potential human health risks with long-term exposure for on-site workers and surrounding residents. The fungal genera producing microbial volatile organic compounds (MVOCs, e.g., Cladosporium, Fusarium sp., Penicillium sp. and Candida) were found in both plants. These MVOCs generation related fungal genera could contribute to the odor in the plants and, more importantly, affect the downwind area after aerosolization and transportation.


Subject(s)
Air Microbiology , Incineration , Aerosols/analysis , China , Environmental Monitoring , Fungi , Humans , Waste Disposal Facilities
13.
Sci Total Environ ; 752: 141641, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32892037

ABSTRACT

Archaea have an important role in the elemental biogeochemical cycle and human health. However, characteristics of airborne archaea affected by anthropogenic and natural processes are unclear. In this study, we investigated the abundance, structures, influencing factors and assembly processes of the archaeal communities in the air samples collected from Beijing in springtime using quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology and statistical analysis. The concentrations of airborne archaea ranged from 101 to 103 copies m-3 (455 ± 211 copies m-3), accounting for 0.67% of the total prokaryote (sum of archaea and bacteria). An increase in airborne archaea was seen when the air quality shifted from clean to slightly polluted conditions. Sandstorm dust imported a large number of archaea to the local atmosphere. Euryarchaeota, Thaumarchaeota and Crenarchaeota were the dominant phyla, revealing the primary role of soil in releasing archaea to the ambient environment. Dispersal-related neutral processes play an important role in shaping the structure of airborne archaeal assembly. Of all phyla, methanogenic Euryarchaeota were most abundant in the air parcels come from the south of Beijing. Air masses from the west of Beijing, which brought sandstorm to Beijing, carried large amounts of ammonia oxidizing archaea Nitrososphaera. The results demonstrate the importance of air mass sources and local weather conditions in shaping the local airborne archaea community.


Subject(s)
Air Pollution , Dust , Archaea/genetics , Beijing , China , Dust/analysis , Humans , Phylogeny
14.
Environ Int ; 142: 105878, 2020 09.
Article in English | MEDLINE | ID: mdl-32580116

ABSTRACT

Stand-alone portable air purifiers (APs) have become an increasingly popular method of controlling individual inhalation exposure. Exposure to bacterial endotoxins has a causative role in respiratory inhalation health. Here, we studied the changes in endotoxin levels in indoor air before and after purification by a portable AP equipped with HEPA (high-efficiency particulate air) filters. An increase in endotoxins was observed when a previously used AP was turned on to clean the air. Replacing the HEPA filters in the AP helped to mitigate the increase in endotoxins of larger sizes but not endotoxins of smaller sizes. Consequently, the use of APs could lead to increased endotoxin deposition in airways, especially in the alveolar region. The endotoxin concentrations on the HEPA filters were well correlated with the free DNA concentrations on the HEPA filters. This correlation indicates that the disrupted bacteria, which released free DNA, could also release endotoxins, thus making HEPA filters a source of indoor airborne endotoxins. Our results illustrate a potential endotoxin inhalation risk associated with HEPA-APs as an air cleaning strategy and highlight the importance of composition-specific air cleaning while reducing the particle number/mass.


Subject(s)
Air Filters , Air Pollution, Indoor , Air Pollution, Indoor/analysis , Bacteria , Dust , Endotoxins
15.
Environ Sci Technol ; 53(22): 13332-13343, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31642660

ABSTRACT

A series of Na-OMS-2 catalysts was prepared by a facile solid-state reaction method. Their physiochemical properties were characterized, and the catalytic activity for ozone decomposition was evaluated. The results showed that the introduction of Na+ in the tunnel framework of OMS-2 facilitated lattice defect formation, which significantly enhanced oxygen vacancies, which are believed to be the active sites for ozone decomposition. Density functional theory calculations also showed that both the oxygen vacancy formation energy and ozone adsorption energy over Na-OMS-2 decreased because of Na+ introduction. Sodium ion introduction significantly improved the OMS-2 catalytic activity for ozone decomposition. The Na-OMS-2 catalyst with a Na/Mn molar ratio of 1/4 exhibited ozone conversion at 92.5% at 25 ± 1 °C after reaction for 6 h under an initial ozone concentration of 45 ± 2 ppm, a relative humidity of 30 ± 2%, and a space velocity of 660 000 h-1. This showed that this catalyst was far superior to manganese oxide catalysts reported to date. Furthermore, the research results also showed that the catalytic activity of Na-OMS-2 deactivated by the accumulation of oxygen-related intermediates was recovered by calcination at 425 °C under N2 atmosphere for 0.5 h. Finally, a complete mechanism for ozone decomposition, catalyst deactivation, and regeneration was proposed.


Subject(s)
Ozone , Adsorption , Catalysis , Oxygen , Sodium
16.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31536707

ABSTRACT

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Beijing , China , Finland
17.
Environ Pollut ; 253: 569-577, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330349

ABSTRACT

Depending on their concentrations, sizes, and types, particulate matters of biological origins (bioPM) significantly affect human health. However, for different air environments, they are not well characterized and can vary considerably. As an example, we investigated the bioPM differences at an urban (Beijing) site and a rural (Wangdu) site in the North China Plain (NCP) using an online monitoring instrument, an ultraviolet aerodynamic particle sizer (UV-APS), the limulus amebocyte lysate (LAL) assay, and a high-throughput sequencing method. Generally, lower concentrations of viable bioPM (hourly mean: 1.3 × 103 ±â€¯1.6 × 103 m-3) and endotoxin (0.66 ±â€¯0.16 EU/m3) in Beijing were observed compared to viable bioPM (0.79 × 105 ±â€¯1.4 × 105 m-3) and endotoxin (15.1 ±â€¯23.96 EU/m3) at the Wangdu site. The percentage of viable bioPM number concentration in the total PM was 3.1% in Beijing and 6.4% in Wangdu. Approximately 80% of viable bioPM was found to be in the range from 1 to 2.5 µm. Nevertheless, the size distribution patterns for viable bioPM at the Beijing and Wangdu sites differed and were affected by PM pollution, leading to distinct lung deposition profiles. Moreover, the distinct diurnal variations in viable bioPM on clean days were dimmed by the PM pollution at both sites. Distinct bacterial community structures were found in the air from the Beijing and Wangdu sites. The bacterial community in urban Beijing was dominated by genus Lactococcus (49.5%) and Pseudomonas (15.1%), while the rural Wangdu site was dominated by Enterococcus (65%) and Paenibacillus (10%). Human-derived genera, including Myroides, Streptococcus, Propionibacterium, Dietzia, Helcococcus, and Facklamia, were higher in Beijing, suggesting bacterial emission from humans in the urban air environment. Our results show that different air harbors different biological species, and people residing in different environments thus could have very different biological particle exposure.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Bacteria/classification , Bacteria/isolation & purification , Beijing , China , Endotoxins/analysis , Environmental Monitoring/methods , Humans , Respiratory System/chemistry , Rural Population , Urban Population
18.
Sci Total Environ ; 690: 76-84, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31284198

ABSTRACT

Interactions of particulate matter (PM) and respiratory tract play a crucial role in PM-related respiratory diseases. The majority of the work focuses on the oxidative stress induced by reactions between PM-borne redox-active components and lung lining fluid (LLF). The effects of PM-borne biological components are largely unknown. Of all PM-borne biologicals, bacteria, as living microorganisms, are closely related with inflammatory immune responses. However, its inhalation risk is usually determined without considering the respiratory physiological conditions. In this study, a surrogate lung fluid (SLF) with four typical antioxidants was applied to characterize the ambient bacteria, including concentrations of total bacteria/viable bacteria/culturable bacteria, metabolic activity, bacteria-derived endotoxin, as well as the community structure. Comparing to those determined by SLF, we find that use of PBS leads to an underestimation of the bacterial culturability and metabolic activity. No effect was seen regarding the number of total bacteria and viable bacteria (with intact membrane). Population structure change was seen for bacteria cultured from SLF-collected samples, when compared to that from PBS. Spore-forming bacteria, e.g., genus Bacillus, were found to be easily recovered with SLF. This implies that use of PBS could underestimate the bacteria inhalation risk, especially those bacterial endospores. Our work highlights the necessity to consider the respiratory airway environment when evaluating microbial inhalation risk.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Air Pollution , Antioxidants , Bacteria , Endotoxins , Inhalation Exposure , Lung , Oxidation-Reduction , Oxidative Stress , Particle Size , Respiratory Tract Diseases
19.
Environ Sci Technol ; 52(20): 11642-11651, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30234977

ABSTRACT

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, ß-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and ß-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and ß-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.


Subject(s)
Air Pollutants , Water , Aerosols , Hydrogen Peroxide , Reactive Oxygen Species
20.
Environ Sci Technol ; 52(19): 10975-10984, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30043612

ABSTRACT

Despite its emerging significant public health concern, the presence of antibiotic resistance genes (ARGs) in urban air has not received significant attention. Here, we profiled relative abundances (as a fraction, normalized by 16S rRNA gene) of 30 ARG subtypes resistant to seven common classes of antibiotics, which are quinolones, ß-lactams, macrolides, tetracyclines, sulfonamides, aminoglycosides, and vancomycins, in ambient total particulate matter (PM) using a novel protocol across 19 world cities. In addition, their longitudinal changes in PM2.5 samples in Xi'an, China as an example were also studied. Geographically, the ARGs were detected to vary by nearly 100-fold in their abundances, for example, from 0.07 (Bandung, Indonesia) to 5.6 (San Francisco, USA). The ß-lactam resistance gene blaTEM was found to be most abundant, seconded by quinolone resistance gene qepA; and their corresponding relative abundances have increased by 178% and 26%, respectively, from 2004 to 2014 in Xi'an. Independent of cities, gene network analysis indicates that airborne ARGs were differentially contributed by bacterial taxa. Results here reveal that urban air is being polluted by ARGs, and different cities are challenged with varying health risks associated with airborne ARG exposure. This work highlights the threat of urban airborne transmission of ARGs and the need of redefining our current air quality standards in terms with public health.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , China , Cities , Drug Resistance, Microbial , Indonesia , RNA, Ribosomal, 16S , San Francisco , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL