Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673956

ABSTRACT

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Osteoporosis , Animals , Mice , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/pathology , Teriparatide/pharmacology , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics
2.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409269

ABSTRACT

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Subject(s)
Cartilage , Chondrogenesis , Animals , Mice , Zinc Finger Protein GLI1/genetics , Chondrogenesis/genetics , Chondrocytes , Osteogenesis , Cell Differentiation
3.
ACS Appl Mater Interfaces ; 16(5): 5486-5503, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284176

ABSTRACT

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Rats , Mice , Animals , Histones , Citric Acid Cycle , Acetylation , Neutrophils/metabolism , Bone Regeneration , Skull/metabolism , Cell Differentiation , Hydrogels/pharmacology , Hydrogels/metabolism , Citrates
4.
Sci Total Environ ; 912: 169315, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38128668

ABSTRACT

Agricultural drainage significantly affected the changes of soil moisture and salinity in ditch wetlands. These changes can profoundly impact the spatial distribution and evolution of ditch wetland vegetation, thereby affecting the ecological environmental effects of these wetlands. Consequently, it is imperative to investigate the response of typical plant growth to drainage and soil salt in ditch wetlands in arid regions. Based on the classical metapopulation conceptual framework model (Levins model), this study established a new model of plant growth change in ditch wetlands, incorporating the key variables (water level and soil salinity) of arid area ditch wetlands. The application of the Gaussian model facilitates the resolution of species growth rates and mortality rates within this model. The study focused on the main drainage ditch (ditch M) and the drainage bucket ditch (ditch N) in the Lubotan saline-alkali land in Fuping, Shaanxi Province. The results revealed the following key findings: 1) the model effectively simulates the response of plant growth changes to water level and soil salinity in ditch wetlands in arid regions, particularly plants in the reed area and transition area disturbed by single factors such as water level and soil salinity; 2) the germination period of Phragmites australis in the reed area thrives in a shallow moisture environment, and adjusting the water level of the drainage ditch can maintain optimal growth conditions for Phragmites australis; 3) during the germination period of Suaeda salsa in the transition area, soil salinity should not be excessively high, though a moderate increase in soil salinity can promote the germination and growth of Suaeda salsa; and 4) Suaeda salsa in the symbiotic area has a higher adaptability to the soil salinity, with change in biomass consistent with plants in the transition area. The model provides an explanation and prediction for the growth changes of plant communities in ditch wetlands under drainage conditions. By integrating this model with the impact of farmland drainage on water level and soil salinity in drainage ditches, effective drainage management measures can be formulated, offering scientific support for the construction of ecological irrigation areas.


Subject(s)
Water , Wetlands , Soil , Agriculture/methods , Plants , Sodium Chloride , Salinity , China
5.
Clin Chem Lab Med ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38000044

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA). Some studies support that sgRNA of SARS-CoV-2 can only exist when the virus is active and is an indicator of virus replication. The results of sgRNA detection in patients can be used to evaluate the condition of hospitalized patients, which is expected to save medical resources, especially personal protective equipment. There have been numerous investigations using different methods, especially molecular methods to detect sgRNA. Here, we introduce the process of SARS-CoV-2 sgRNA formation and the commonly used molecular diagnostic methods to bring a new idea for clinical detection in the future.

6.
Cell Biosci ; 13(1): 105, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301964

ABSTRACT

Mesenchymal progenitors (MPs) are considered to play vital roles in bone development, growth, bone turnover, and repair. In recent years, benefiting from advanced approaches such as single-cell sequence, lineage tracing, flow cytometry, and transplantation, multiple MPs are identified and characterized in several locations of bone, including perichondrium, growth plate, periosteum, endosteum, trabecular bone, and stromal compartment. However, although great discoveries about skeletal stem cells (SSCs) and progenitors are present, it is still largely obscure how the varied landscape of MPs from different residing sites diversely contribute to the further differentiation of osteoblasts, osteocytes, chondrocytes, and other stromal cells in their respective destiny sites during development and regeneration. Here we discuss recent findings on MPs' origin, differentiation, and maintenance during long bone development and homeostasis, providing clues and models of how the MPs contribute to bone development and repair.

7.
Heliyon ; 8(12): e12335, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36582732

ABSTRACT

Objective: This study aimed to investigate the feasibility of using eye tracking data to identify orthopedic trainees' technical proficiency in hip arthroscopic procedures during simulation-based training. Design: A cross sectional study. Setting: A simulation-based training session for hip arthroscopy was conducted. Eye tracking devices were used to record participants' eye movements while performing simulated operations. The NASA Task Load Index survey was then used to measure subjective opinions on the perceived workload of the training. Statistical analyses were performed to determine the significance of the eye metrics and survey data. Participants: A total of 12 arthroscopic trainees, including resident doctors, junior specialist surgeons, and consultant surgeons from the Department of Orthopedics in five hospitals, participated in this study. They were divided into three subgroups based on their prior clinical experience. Results: Significant differences, including those for dwell time, number of fixations, number of saccades, saccade duration, peak velocity of the saccade, and pupil entropy, were observed among the three subgroups. Additionally, there were clear trends in the perceived workload of the simulation-based training based on feedback from the participants. Conclusion: Based on this preliminary study, a correlation was identified between the eye tracking metrics and participants' experience levels. Hence, it is feasible to apply eye tracking data as a supplementary objective assessment tool to benchmark the technical proficiency of surgical trainees in hip arthroscopy, and enhance simulation-based training.

8.
Microorganisms ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36296273

ABSTRACT

The altitudinal patterns of soil fungi have attracted considerable attention; however, few studies have investigated the diversity and community assembly of fungal functional guilds along an altitudinal gradient. Here, we explored ectomycorrhizal (EcM) and saprotrophic (SAP) fungal diversity and community assembly along a 470 m vertical gradient (ranging from 830 to 1300 m) on Oakley Mountain, sampling bulk soils in the 0-10 cm and 10-20 cm soil layers of Larix gmelinii-dominated forests. Illumina MiSeq sequencing of the ITS genes was employed to explore the fungal community composition and diversity. The relative abundance of EcM and SAP fungi showed a divergent pattern along an altitudinal gradient, while we observed a consistent altitudinal tendency for EcM and SAP fungal diversity and community assembly. The diversity of both fungal guilds increased with increasing altitude. Altitude and soil moisture were the key factors affecting the community composition of both fungal guilds. In addition, the plant community composition significantly affected the EcM fungal community composition, whereas the dissolved organic nitrogen and ammonium nitrogen contents were the driving factors of SAP fungal community. Despite the effects of vegetation and soil factors, EcM and SAP fungal communities were mainly governed by stochastic processes (especially drift) at different altitudes and soil depths. These results shed new light on the ecology of different fungal functional guilds along an altitudinal gradient, which will provide a deeper understanding of the biogeography of soil fungi.

9.
PLoS One ; 17(10): e0276728, 2022.
Article in English | MEDLINE | ID: mdl-36288366

ABSTRACT

OBJECTIVE: To evaluate the diagnostic value of recombinase polymerase/ aided amplification (RPA/RAA) integrated clustered regularly interspaced short palindromic repeats (CRISPR) in the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We searched relevant literature on CRISPR technology for COVID-19 diagnosis using "novel coronavirus", "clustered regularly interspaced short palindromic repeats" and "RPA/RAA" as subject terms in PubMed, Cochrane, Web of Science, and Embase databases. Further, we performed a meta-analysis after screening the literature, quality assessment, and data extraction. RESULTS: The pooled sensitivity, specificity and a rea under the summary receiver operator characteristic curve (AUC) were 0.98 [95% confidence interval (CI):0.97-0.99], 0.99 (95% CI: 0.97-1.00) and 1.00 (95% CI: 0.98-1.00), respectively. For CRISPR-associated (Cas) proteins-12, the sensitivity, specificity was 0.98 (95% CI: 0.96-1.00), 1.00 (95% CI: 0.99-1.00), respectively. For Cas13, the sensitivity and specificity were 0.99 (95% CI: 0.97-1.00) and 0.95 (95% CI: 0.91-1.00). The positive likelihood ratio (PLR) was 183.2 (95% CI: 28.8, 1166.8); the negative likelihood ratio (NLR) was 0.02 (95% CI: 0.01, 0.03). CONCLUSION: RPA/RAA integrated with CRISPR technology is used to diagnose coronavirus disease-19 (COVID-19) with high accuracy and can be used for large-scale population screening.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , CRISPR-Cas Systems/genetics , Recombinases , Sensitivity and Specificity
10.
Biology (Basel) ; 11(8)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36009813

ABSTRACT

Drought is a critical and increasingly common abiotic factor that has impacts on plant structures and functioning and is a challenge for the successful management of forest ecosystems. Here, we test the shifts in leaf morpho-anatomical or hydraulic traits and plant growth above ground caused by drought. A factorial experiment was conducted with two gymnosperms (Larix gmelinii and Pinus koraiensis) and two angiosperms (Fraxinus mandshurica and Tilia amurensis), tree species grown under three varying drought intensities in NE China. Considering all the species studied, the plant height (PH), root collar diameter (RCD), and plant biomass (PB) were significantly decreased by drought. The leaf thickness (LT) increased, while the leaf area (LA) decreased with drought intensity. In the gymnosperms, the mesophyll thickness (MT) increased, and the resin duct decreased, while in the angiosperms the palisade mesophyll thickness (PMT), the spongy mesophyll thickness (SMT), and the abaxial (ABE) and adaxial epidermis (ADE) thickness were increased by drought. The correlation analysis revealed that P. koraiensis and F. mandshurica had the higher RMF and total plant biomass, but the least LMF, suggesting drought tolerance. In contrast, the L. gmelinii had the least RMF and higher LMF, suggesting vulnerability to drought. Similarly, T. amurensis had the higher leaf size, which increased the evaporative demand and depleted the soil water quickly relative to the other species. The interrelation among the morpho-anatomical leaf traits was equally affected by drought across all the studied species, suggesting that there is no clear evidence to differentiate the taxa based on drought resistance vs. drought tolerance. Thus, we have identified some easily measurable traits (i.e., LMF, RMF, and PB) which evidenced the seedling's ability to cope with drought and which therefore could be used as proxies in the selection of drought tolerant species for reforestation in the temperate forest.

11.
Plants (Basel) ; 11(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890516

ABSTRACT

Ecological shading fueled by maize intercropping in tea plantations can improve tea quality and flavor, and efficiently control the population occurrence of main insect pests. In this study, tea plants were intercropped with maize in two planting directions from east to west (i.e., south shading (SS)) and from north to south (i.e., east shading (ES) and west shading (WS)) to form ecological shading, and the effects on tea quality, and the population occurrence and community diversity of insect pests and soil microbes were studied. When compared with the non-shading control, the tea foliar nutrition contents of free fatty acids have been significantly affected by the ecological shading. SS, ES, and WS all significantly increased the foliar content of theanine and caffeine and the catechin quality index in the leaves of tea plants, simultaneously significantly reducing the foliar content of total polyphenols and the phenol/ammonia ratio. Moreover, ES and WS both significantly reduced the population occurrences of Empoasca onukii and Trialeurodes vaporariorum. Ecological shading significantly affected the composition of soil microbial communities in tea plantations, in which WS significantly reduced the diversity of soil microorganisms.

12.
ACS Omega ; 7(15): 13354-13361, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474793

ABSTRACT

Nowadays, oil pollution of water caused by illegal discharges or accidental events occurs frequently, and the waste of resources and environmental pollution cannot be ignored, so effective oil-water separation methods are needed to cope with such incidents. To solve these problems, this paper investigated an aerogel made from a plant polysaccharide, konjac glucomannan (KGM), supplemented with graphene oxide (GO), to improve the mechanical properties. Finally, a hydrophobic layer was attached to the surface and interior of the aerogel via chemical vapor deposition to improve its selectivity toward oil. Through a series of characterization methods such as infrared, X-ray photoelectron spectroscopy, and X-ray diffraction, it was demonstrated that KGM and GO were successfully cross-linked, resulting in excellent mechanical properties and directional absorption properties on oil. This composite polysaccharide aerogel could absorb oil 48 times its own weight. In addition, due to its strong mechanical properties, the gel can be reused many times, and the maximum recovery rate can be maintained at 96% after 10 cycles. Furthermore, the absorption of oil from water was conducted in a continuous mode, demonstrating the diversity of application scenarios. Generally, the results observed in this work have shown that the KGM aerogels have great potential for applications in oil-water separation.

13.
BMC Plant Biol ; 22(1): 166, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366797

ABSTRACT

BACKGROUND: The tea aphid, Toxoptera aurantii (Boyer de Fonscolombe) is a polyphagous pest predominant in tea orchards and has become the most pernicious pest deteriorating tea quality. Nitrogen (N) is essential to plant growth improvement, and it can significantly impact plant defensive ability against aphid infestation. This study was designed to quantify the influence of reduced N-fertilizer application on foliar chemicals and functional quality parameters of tea plants against the infestation of T. aurantii. In this study, the tea seedlings (cv. Longjing43) were applied with normal level (NL) of N-fertilizer (240 kg N ha-1) along with reduced N-fertilizer levels (70%NL and 50%NL), and with and without T. aurantii infestation. RESULTS: The results showed that N-fertilizer application significantly affected plant biomass and photosynthetic indexes, foliar soluble nutrients and polyphenols, tea catechins, caffeine, essential amino acids, volatile organic compounds of tea seedlings, and the population dynamics of T. aurantii. Compared with the normal N-fertilizer level, the reduced N-fertilizer application (70%NL and 50%NL) significantly decreased all the foliar functional quality components of tea seedlings without aphid infestation, while these components were increased in tea seedlings with aphid infestation. Moreover, the transcript expression levels of foliar functional genes (including CsTCS, CsTs1, and CsGT1) were significantly higher in the NL, and significantly lower in the 50%NL for tea seedlings without aphid infestation, while the transcript expression levels were significantly higher in 50%NL in aphid inoculated tea seedlings. CONCLUSION: The results demonstrated that the reduced N-fertilizer application could enhance foliar chemicals and functional quality parameters of tea plants especially with T. aurantii infestation, which can relieve soil nitrogen pressure and reduce pesticide use for control of tea aphid infestation in tea plantations.


Subject(s)
Aphids , Camellia sinensis , Animals , Camellia sinensis/metabolism , Fertilizers/analysis , Nitrogen/metabolism , Tea
14.
Front Plant Sci ; 13: 851099, 2022.
Article in English | MEDLINE | ID: mdl-35401616

ABSTRACT

Nitrogen (N) is one of the essential nutrients for plant growth. Appropriate application of N can improve the N use efficiency (NUE) and significantly promote plants' growth. However, under N toxic conditions, the relationship between the growth and antioxidant system of invasive plants under different N forms and competitive treatments is not fully understood. Therefore, in this study, the performance of invasive species Wedelia trilobata and its native species Wedelia chinensis was evaluated under two sets of N forms and ratios, namely, NH4 +-N(AN)/NO3 --N(NN) = 2:1 and NH4 +-N(AN)/NO3 --N(NN) = 1:2 along with two intraspecific and interspecific competitions under without N and high N level of 15 g N⋅m-2 year-1, respectively. Data regarding the growth indices, antioxidant enzyme activities, including peroxidase (POD) and catalase (CAT), malondialdehyde (MDA), and proline contents were determined. Results showed that for competitive treatments, growth status was better for interspecific competition than intraspecific competition. The plant biomass of W. trilobata was significantly higher than that of W. chinensis. N significantly promoted the plants' growth in terms of leaf area and biomass yield, and the antioxidant enzyme activities were significantly increased under a high N treatment than that of the control. Among N forms/ratios, ammonium N (AN)/nitrate N (NN) = 2:1 significantly enhanced the enzyme activity, particularly in W. trilobata. Furthermore, for intraspecific competition, MDA contents of W. trilobata were significantly decreased compared to that of W. chinensis. In conclusion, our results showed that W. trilobata adapted well under competitive conditions through better growth and antioxidant defense system.

15.
Medicine (Baltimore) ; 100(44): e27428, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34871208

ABSTRACT

BACKGROUND: The pathogenesis of human immunodeficiency virus 1 (HIV-1) infection is so complex that have not been clearly defined, despite intensive efforts have been made by many researchers. MicroRNA (miRNA) as regulation factor in various human diseases may influence the course of HIV-1 infection by targeting mRNAs. Thus, studies combining transcription of posttranscriptional miRNA regulation are required. METHODS: With the purpose of identifying cascaded miRNA-mRNA regulatory relationships related to HIV infection in gene level, the parallel miRNA, and mRNA expression profiles were analyzed to select differential expressed miRNAs and mRNAs. Then, miRNA-mRNA interactions were predicted using 3 data sources and Pearson correlation coefficient was calculated based on the gene expression level for accuracy improvement. Furthermore, the calculation of the regulatory impact factors was conducted to reveal crucial regulators in HIV-1 infection. To give further insight into these transcription factor (TF) regulators, the differentially co-expression analysis was conducted to identify differentially co-expressed links and differential co-expressed genes and the co-expression gene modules were identified using a threshold-based hierarchical clustering method, then modules were combined into a miRNA-TF-mRNA network. RESULTS: A total of 69,126 differentially co-expressed links and 626 differential co-expressed genes were identified. Functional enrichment analysis indicated that these co-expressed genes were significantly involved in immune response and apoptosis. Moreover, according to regulatory impact factors, 5 most influential TFs and miRNA in HIV-1 infection were identified and miRNA-TF-mRNA regulatory networks were built during the computing process. CONCLUSIONS: In our study, a set of integrated methods was generated to identify important regulators and miRNA-TF-mRNA interactions. Parallel profiling analysis of the miRNAs and mRNAs expression of HIV/acquired immunodeficiency syndrome (AIDS) patients after antiretroviral therapy indicated that some regulators have wide impact on gene regulation and that these regulatory elements may bear significant implications on the underlying molecular mechanism and pathogenesis of AIDS occurrence.


Subject(s)
Antiretroviral Therapy, Highly Active , HIV Infections/drug therapy , HIV-1/genetics , MicroRNAs/genetics , RNA, Messenger/metabolism , Acquired Immunodeficiency Syndrome , Antiviral Agents/therapeutic use , Gene Expression Profiling , Gene Regulatory Networks , HIV Infections/genetics , Humans , MicroRNAs/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics
16.
Nephrol Ther ; 17(1): 30-34, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33203613

ABSTRACT

INTRODUCTION: Uremic pruritus is very common in hemodialysis or renal failure patients, there were lots of available treatments such as gabapentin, pregabalin, ondansetron, etc. However, there is no quantified study comparing these treatments together, it is impossible to conduct a clinical trial involving so many treatments, so we conduct a network meta-analysis to compare them. METHOD: We collected mean difference and standard error of visual analogue scale data as outcome. In total we collected 15 articles, 15 articles, 1180 subjects and 6 treatments included to this study. RESULTS: In these comparisons, gabapentin showed the largest effect MD: 5.19, 95%CI [3.77, 6.61], anti-histamine MD: 4.65, 95%CI [2.22, 7.07] and pregabalin MD: 4.62, 95%CI [2.71, 6.62] showed a similar effect. Opioid pathway related treatment also showed a significant but not so large effect MD: 2.45, 95%CI [0.41, 4.49]. Ondansetron and Doxepin didn't show a significant improvement among placebo, the overall quantifying heterogeneity I2=43.1%. There is no statically difference between gabapentin, pregabalin and anti-histamine treatments. CONCLUSIONS: So we conclude that gabapentin, pregabalin and anti-histamine has a similar efficacy on pruritus control.


Subject(s)
Uremia , Humans , Network Meta-Analysis , Pruritus/drug therapy , Pruritus/etiology , Randomized Controlled Trials as Topic , Renal Dialysis , Uremia/complications , Uremia/therapy
17.
Front Cell Dev Biol ; 9: 809918, 2021.
Article in English | MEDLINE | ID: mdl-35071243

ABSTRACT

Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.

18.
Sci Rep ; 10(1): 10789, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612197

ABSTRACT

To reveal the mechanism of heavy metal Zn migration in the irrigated paddy field reclaimed water, this study investigated irrigation quota of 75, 150, 225 and 300 m3/hm2 for three consecutive years. The results showed that with the same irrigation quota, firstly the content of Zn, its variation and the rate of change in soil increased, and hereafter decreased with the increase of soil depth, and finally become stable of reclaimed water. Study results identified that when the irrigation quota was 75, 150, 225 and 300 m3/hm2, the average content of Zn in the soil reached the maximum with the value of 9.60, 12.10, 16.75 and 18.50 mg/kg respectively at the depth of 30 cm. The average content of Zn in soil found maximum values of 13.51, 16.01, 19.02 and 20.98 mg/kg, respectively on the 120th day of cultivation. This study also identified that the content of Zn, its variation and the rate of change increased with the increase of irrigation quota at the same soil depth. Additionally, when the soil depth or plant growth time was the same, the content of Zn, its variation and the rate of change increased with the increase of irrigation quota. However, at the soil depth of 30 cm, the content of Zn in the irrigation quota of 75, 150 and 225 m3/hm2 decreased by 48.11%, 34.59% and 9.46%. The fertility time of 120 days also decreased by 35.71%, 23.81% and 9.52% respectively compared to an irrigation quota of 300 m3/hm2. All the findings are explored by a nonlinear regression under different situations and timing. The mean value of the standard error between the statistical and measured value is found insignificant. However, the correlation coefficient is found greater than 0.9400 and statistically significant. Thus, the findings by nonlinear regression reflected the migration law of soil Zn duly with soil depth and plant growth time in the rice field. This study provided theoretical support for the comprehensive treatment and ecological restoration of heavy metals to the farmland soil in China.

19.
PLoS One ; 12(4): e0175666, 2017.
Article in English | MEDLINE | ID: mdl-28410417

ABSTRACT

Non-small cell lung cancer is one of the most common cancers and the leading cause of cancer death worldwide. Genetic variants in regulatory regions of some miRNAs might be involved in non-small cell lung cancer susceptibility and survival. rs12220909 (G/C) genetic polymorphism in miR-4293 has been shown to be associated with decreased risk of esophageal squamous cell carcinoma. However, the influence of rs12220909 genetic variation on non-small cell lung cancer susceptibility has not been reported. In order to evaluate the potential association between miR-4293 rs12220909 and non-small cell lung cancer risk in a Chinese population, we performed a case-control study among 998 non-small cell lung cancer cases and 1471 controls. The data shows that miR-4293 rs12220909 was significantly associated with decreased susceptibility to non-small cell lung cancer (GC vs.GG: OR = 0.681, 95%CI = 0.555-0.835, P = 2.19E-4; GG vs. GC+CC: OR = 0.687, 95%CI = 0.564-0.837, P = 1.95E-4), which indicates that rs12220909 in miR-4293 may play a significant role in the development of non-small cell lung cancer.


Subject(s)
Asian People/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Lung Neoplasms/genetics , MicroRNAs/genetics , Adult , Aged , Alleles , Carcinoma, Non-Small-Cell Lung/pathology , Case-Control Studies , China , Female , Genotype , Humans , Lung Neoplasms/pathology , Male , MicroRNAs/metabolism , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Risk Factors
20.
Tumour Biol ; 37(4): 4777-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26518769

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is the dominant type of esophageal cancer in the East Asian population. MicroRNAs (miRNAs) have been studied to play important roles in tumorigenesis. Single nucleotide polymorphisms (SNPs) in miRNA lead to the aberrant expression and structural alteration of miRNA and are hypothesized to be involved in tumorigenesis and cancer development. We conducted a population-based case-control study to evaluate the association between SNPs in miRNAs and ESCC risk in 1400 ESCC cases and 2185 matched controls. Four SNPs including miR-196a2 rs11614913, miR-146a rs2910164, miR-499 rs3746444, and miR-423 rs6505162 were selected with comprehensive collection strategy and genotyped using the SNaPshot Multiplex System. Odds ratio (OR) and 95 % confidence interval (95 % CI) were used to assess the strength of association. The CC genotype of miR-196a2 rs11614913 was significantly associated with an increased ESCC risk compared with the TT genotype (OR 1.11, 95 % CI 1.01-1.22, P 0.049) and the TT/TC genotypes (OR 1.09, 95 % CI 1.01-1.19, P 0.043). The association was more pronounced in non-drinkers in the recessive model (OR 1.13, 95 % CI 1.01-1.27, P 0.029). A significantly increased risk of ESCC associated with miR-499 rs3746444 polymorphism was evident among patients who never smoking and drinking. This study suggests that miR-196a2 rs11614913 and miR-499 rs3746444 are associated with an increased ESCC risk in a Chinese population.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , MicroRNAs/genetics , Asian People , Case-Control Studies , China , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Models, Genetic , Polymorphism, Single Nucleotide , ROC Curve , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...