Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37629795

ABSTRACT

Nanosized Ag and CeO2 particles obtained through the hydrothermal method were physically mixed to obtain composite antibacterial agents. The comparative experiments of antibacterial properties showed that the antibacterial activity of the nanocomposites was improved compared to the nanoparticles alone, which indicated that the synergistic antibacterial effect existed between Ag and CeO2. On the one hand, ICP-MS results showed that the existence of CeO2 suppressed the silver ion release rate and provided the composite with the ability of antibrowning; on the other, EPR data indicated that more hydroxyl radicals (·OH) were generated by the interfacial interaction between nanosized Ag and nanosized CeO2. Hence, for the Ag-CeO2 composite antibacterial agent, hydroxyl radicals played an important role in causing bacterial death.

2.
Molecules ; 26(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770778

ABSTRACT

Mn-doped CeO2 and CeO2 with the same morphology (nanofiber and nanocube) have been synthesized through hydrothermal method. When applied to benzene oxidation, the catalytic performance of Mn-doped CeO2 is better than that of CeO2, due to the difference of the concentration of O vacancy. Compared to CeO2 with the same morphology, more oxygen vacancies were generated on the surface of Mn-doped CeO2, due to the replacement of Ce ion with Mn ion. The lattice replacement has been analyzed through XRD, Raman, electron energy loss spectroscopy and electron paramagnetic resonance technology. The formation energies of oxygen vacancy on the different exposed crystal planes such as (110) and (100) for Mn-doped CeO2 were calculated by the density functional theory (DFT). The results show that the oxygen vacancy is easier to be formed on the (110) plane. Other factors influencing catalytic behavior have also been investigated, indicating that the surface oxygen vacancy plays a crucial role in catalytic reaction.

3.
Nanomaterials (Basel) ; 9(2)2019 Feb 03.
Article in English | MEDLINE | ID: mdl-30717455

ABSTRACT

The catalytic activities of CeO2-MnOx composite oxides synthesized through oxalate method were researched. The results exhibited that the catalytic properties of CeO2-MnOx composite oxides were higher than pure CeO2 or MnOx. When the Ceat/Mnat ratio was 3:7, the catalytic activity reached the best. In addition, the activities of CeO2-MnOx synthesized through different routes over benzene oxidation were also comparative researched. The result indicated that the catalytic property of sample prepared by oxalate method was better than others, which maybe closely related with their meso-structures. Meanwhile, the effects of synergistic interaction and oxygen species in the samples on the catalytic ability can't be ignored.

4.
J Nanosci Nanotechnol ; 19(4): 2411-2416, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30487011

ABSTRACT

The effects of hollow CeO2 nanospheres on the flame-retardance and smoke-suppression properties of room-temperature-vulcanized (RTV) silicone rubber were studied. It was observed that the flame retardance of RTV silicone rubber composites was improved by hollow CeO2 nanospheres. Surprisingly, the nanospheres also enhanced the smoke-suppression characteristics of the composites. The limited oxygen index of RTV/Mg(OH)2 was raised from 23.7 to 25.9 by the addition of hollow CeO2 nanospheres, while the smoke density was reduced markedly, from 35.1 to 17.6. The thermal stability and char yield of the RTV silicone rubber composites were characterized by thermogravimetric techniques. Furthermore, the degradation product of the composites was analyzed by pyrolysis-gas chromatography-mass spectroscopy. A mechanism to explain the observed results is proposed.

5.
Nanomaterials (Basel) ; 8(10)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274299

ABSTRACT

Hierarchical CeO2 particles were synthesized by a hydrothermal method based on the reaction between CeCl3·7H2O and PVP at 270 °C. The flower-like CeO2 with an average diameter of about 1 µm is composed of compact nanosheets with thicknesses of about 15 nm and have a surface area of 36.8 m²/g, a large pore volume of 0.109 cm³/g, and a narrow pore size distribution (14.9 nm in diameter). The possible formation mechanism of the hierarchical CeO2 nanoparticles has been illustrated. The 3D hierarchical structured CeO2 exhibited a higher catalytic activity toward CO oxidation compared with commercial CeO2.

6.
ChemistryOpen ; 5(5): 495-504, 2016 10.
Article in English | MEDLINE | ID: mdl-27777843

ABSTRACT

A Ce-Mn composite oxide possessing a rod-like morphology (with a fixed molar ratio of Ce/Mn=3:7) was synthesized through a hydrothermal method. Mn ions were doped into a CeO2 framework to replace Ce ions, thereby increasing the concentration of oxygen vacancies. The formation energies of O vacancies for the Ce-Mn composite oxide were calculated by applying density functional theory (DFT). The data showed that it was easier to form an O vacancy in the composite. The catalytic behavior of the Ce-Mn composite oxide for benzene degradation was researched in detail, which exhibited a higher activity than the pure phases. Based on this, the Ce-Mn composite oxide was chosen as a supporter to load PdO nanoparticles. The activity was enhanced further compared with that of the supporter alone (for the supporter, the reaction rate R214 °C=0.68×10-4 mol gcat-1 s-1 and apparent activation energy Ea=12.75 kJ mol-1; for the supporting catalyst, R214 °C=1.46×10-4 mol gcat-1 s-1, Ea=10.91 kJ mol-1). The corresponding catalytic mechanism was studied through in situ Raman and FTIR spectroscopy, which indicated that the process of benzene oxidation was related to different types of oxygen species existing at the surface of the catalysts.

7.
Chemphyschem ; 12(15): 2763-70, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-21882333

ABSTRACT

We report on the preparation and characterization of CeO(2) nanofibers (CeO(2)-NFs) and nanocubes (CeO(2)-NCs), as well as Sm- and Gd-doped CeO(2) nanocubes (Sm-CeO(2)-NCs and Gd-CeO(2)-NCs), synthesized by a simple hydrothermal process for CO catalytic oxidation. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence spectroscopy. Their oxygen-storing capacity (OSC) was examined by means of hydrogen temperature-programmed reduction (H(2)-TPR) and oxygen pulse techniques. Their catalytic properties for CO catalytic oxidation were comparatively investigated. The results showed that the CeO(2)-NFs possessed a higher catalytic activity compared to the CeO(2)-NCs because of their smaller size and the greater number of oxygen vacancies. The activity of the Sm-CeO(2)-NCs was higher than that of the CeO(2)-NCs due to an increase in the number of oxygen vacancies, which results from the substitution of Ce(4+) species with Sm(3+) ions. In contrast, Gd doping had a negative effect on the CO catalytic oxidation due to the special electron configuration of Gd(3+) (4f(7)). Our work demonstrates that the oxygen vacancies in pure CeO(2) and the electron configuration of the dopants in doped CeO(2) play an important role in CO oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...