Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 413, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693513

ABSTRACT

Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Animals , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
2.
MedComm (2020) ; 5(5): e539, 2024 May.
Article in English | MEDLINE | ID: mdl-38680520

ABSTRACT

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

3.
J Control Release ; 369: 696-721, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38580137

ABSTRACT

Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.

4.
Signal Transduct Target Ther ; 9(1): 34, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38378653

ABSTRACT

Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.


Subject(s)
Communicable Diseases , Nanoparticles , Humans , Aged , Communicable Diseases/diagnosis , Communicable Diseases/drug therapy , Drug Carriers/therapeutic use , Nanoparticles/therapeutic use , Nanotechnology , Inflammation/drug therapy
5.
Front Immunol ; 14: 1291836, 2023.
Article in English | MEDLINE | ID: mdl-38106416

ABSTRACT

Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , Antibodies, Bispecific/therapeutic use , Immunotherapy/methods , Signal Transduction
6.
Signal Transduct Target Ther ; 8(1): 252, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336889

ABSTRACT

The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Asian People , COVID-19/immunology
7.
MedComm (2020) ; 4(3): e263, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37125241

ABSTRACT

The XBB.1.5 subvariant has drawn great attention owing to its exceptionality in immune evasion and transmissibility. Therefore, it is essential to develop a universally protective coronavirus disease 2019 vaccine against various strains of Omicron, especially XBB.1.5. In this study, we evaluated and compared the immune responses induced by six different spike protein vaccines targeting the ancestral or various Omicron strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. We found that spike-wild-type immunization induced high titers of neutralizing antibodies (NAbs) against ancestral SARS-CoV-2. However, its activity in neutralizing Omicron subvariants decreased sharply as the number of mutations in receptor-binding domain (RBD) of these viruses increased. Spike-BA.5, spike-BF.7, and spike-BQ.1.1 vaccines induced strong NAbs against BA.5, BF.7, BQ.1, and BQ.1.1 viruses but were poor in protecting against XBB and XBB.1.5, which have more RBD mutations. In sharp contrast, spike-XBB.1.5 vaccination can activate strong and broadly protective immune responses against XBB.1.5 and other common subvariants of Omicron. By performing correlation analysis, we found that the NAbs titers were negatively correlated with the number of RBD mutations in the Omicron subvariants. Vaccines with more RBD mutations can effectively overcome the immune resistance caused by the accumulation of RBD mutations, making spike-XBB.1.5 the most promising vaccine candidate against universal Omicron variants.

8.
Mol Biomed ; 4(1): 9, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36894743

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic, induced by newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants, posed great threats to global public health security. There is an urgent need to design effective next­generation vaccines against Omicron lineages. Here, we investigated the immunogenic capacity of the vaccine candidate based on the receptor binding domain (RBD). An RBDß-HR self-assembled trimer vaccine including RBD of Beta variant (containing K417, E484 and N501) and heptad repeat (HR) subunits was developed using an insect cell expression platform. Sera obtained from immunized mice effectively blocked RBD-human angiotensin-converting enzyme 2 (hACE2) binding for different viral variants, showing robust inhibitory activity. In addition, RBDß-HR/trimer vaccine durably exhibited high titers of specific binding antibodies and high levels of cross-protective neutralizing antibodies against newly emerging Omicron lineages, as well as other major variants including Alpha, Beta, and Delta. Consistently, the vaccine also promoted a broad and potent cellular immune response involving the participation of T follicular helper (Tfh) cells, germinal center (GC) B cells, activated T cells, effector memory T cells, and central memory T cells, which are critical facets of protective immunity. These results demonstrated that RBDß-HR/trimer vaccine candidates provided an attractive next-generation vaccine strategy against Omicron variants in the global effort to halt the spread of SARS-CoV-2.

9.
MedComm (2020) ; 4(2): e238, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36911160

ABSTRACT

BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.

10.
Nat Commun ; 14(1): 1011, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823188

ABSTRACT

Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phosphoglycerate Dehydrogenase , Protein-Arginine N-Methyltransferases , Animals , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methylation , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Serine/metabolism
11.
Signal Transduct Target Ther ; 8(1): 9, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36604431

ABSTRACT

Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Antigens, Neoplasm/genetics , Immunotherapy
12.
Nat Commun ; 13(1): 5459, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115859

ABSTRACT

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit , Water
14.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: mdl-35273357

ABSTRACT

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Histones , Mice , N-Acetylneuraminic Acid , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
15.
Signal Transduct Target Ther ; 7(1): 19, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35046386

ABSTRACT

Interleukin-37b (hereafter called IL-37) was identified as fundamental inhibitor of natural and acquired immunity. The molecular mechanism and function of IL-37 in colorectal cancer (CRC) has been elusive. Here, we found that IL-37 transgenic (IL-37tg) mice were highly susceptible to colitis-associated colorectal cancer (CAC) and suffered from dramatically increased tumor burdens in colon. Nevertheless, IL-37 is dispensable for intestinal mutagenesis, and CRC cell proliferation, apoptosis, and migration. Notably, IL-37 dampened protective cytotoxic T cell-mediated immunity in CAC and B16-OVA models. CD8+ T cell dysfunction is defined by reduced retention and activation as well as failure to proliferate and produce cytotoxic cytokines in IL-37tg mice, enabling tumor evasion of immune surveillance. The dysfunction led by IL-37 antagonizes IL-18-induced proliferation and effector function of CD8+ T cells, which was dependent on SIGIRR (single immunoglobulin interleukin-1 receptor-related protein). Finally, we observed that IL-37 levels were significantly increased in CRC patients, and positively correlated with serum CRC biomarker CEA levels, but negatively correlated with the CD8+ T cell infiltration in CRC patients. Our findings highlight the role of IL-37 in harnessing antitumor immunity by inactivation of cytotoxic T cells and establish a new defined inhibitory factor IL-37/SIGIRR in cancer-immunity cycle as therapeutic targets in CRC.


Subject(s)
Carcinogenesis/immunology , Colitis/immunology , Colorectal Neoplasms/immunology , Interleukin-1/immunology , Neoplasm Proteins/immunology , Receptors, Interleukin-1/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Carcinogenesis/genetics , Colitis/genetics , Colitis/pathology , Colorectal Neoplasms/genetics , Interleukin-1/genetics , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Receptors, Interleukin-1/genetics
16.
Cell Biol Toxicol ; 38(4): 591-609, 2022 08.
Article in English | MEDLINE | ID: mdl-34170461

ABSTRACT

Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.


Subject(s)
Pneumonia , Silicon Dioxide , Cathepsin B/metabolism , DNA, Mitochondrial/metabolism , Humans , Inflammation/metabolism , Macrophages/metabolism , Necrosis/chemically induced , Necrosis/metabolism , Pneumonia/chemically induced , Silicon Dioxide/toxicity
17.
Signal Transduct Target Ther ; 6(1): 343, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531369

ABSTRACT

SARS-CoV-2 recognizes, via its spike receptor-binding domain (S-RBD), human angiotensin-converting enzyme 2 (ACE2) to initiate infection. Ecto-domain protein of ACE2 can therefore function as a decoy. Here we show that mutations of S19W, T27W, and N330Y in ACE2 could individually enhance SARS-CoV-2 S-RBD binding. Y330 could be synergistically combined with either W19 or W27, whereas W19 and W27 are mutually unbeneficial. The structures of SARS-CoV-2 S-RBD bound to the ACE2 mutants reveal that the enhanced binding is mainly contributed by the van der Waals interactions mediated by the aromatic side-chains from W19, W27, and Y330. While Y330 and W19/W27 are distantly located and devoid of any steric interference, W19 and W27 are shown to orient their side-chains toward each other and to cause steric conflicts, explaining their incompatibility. Finally, using pseudotyped SARS-CoV-2 viruses, we demonstrate that these residue substitutions are associated with dramatically improved entry-inhibition efficacy toward both wild-type and antibody-resistant viruses. Taken together, our biochemical and structural data have delineated the basis for the elevated S-RBD binding associated with S19W, T27W, and N330Y mutations in ACE2, paving the way for potential application of these mutants in clinical treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
18.
MedComm (2020) ; 2(3): 430-441, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34226895

ABSTRACT

The emerging variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in pandemic call for the urgent development of universal corona virus disease 2019 (COVID-19) vaccines which could be effective for both wild-type SARS-CoV-2 and mutant strains. In the current study, we formulated protein subunit vaccines with AS03 adjuvant and recombinant proteins of S1 subunit of SARS-CoV-2 (S1-WT) and S1 variant (K417N, E484K, N501Y, and D614G) subunit (S1-Mut), and immunized transgenic mice that express human angiotensin-converting enzyme 2 (hACE2). The S1 protein-specific antibody production and the neutralization capability for SARS-CoV-2 and B.1.351 variant were measured after immunization in mice. The results revealed that the S1-Mut antigens were more effective in inhibiting the receptor-binding domain and ACE2 binding in B.1.351 variant than in wild-type SARS-CoV-2. Furthermore, the development of a bivalent vaccine exhibited the ideal neutralization properties against wild-type and B.1.351 variant, as well as other variants. Our findings may provide a rationale for the development of a bivalent recombinant vaccine targeting the S1 protein that can induce the neutralizing antibodies against both SARS-CoV-2 variants and wild-type of the virus and may be of importance to explore the potential clinical use of bivalent recombinant vaccine in the future.

20.
Autophagy ; 17(2): 529-552, 2021 02.
Article in English | MEDLINE | ID: mdl-32019420

ABSTRACT

The precise mechanism through which macroautophagy/autophagy affects psoriasis is poorly understood. Here, we found that keratinocyte (KC) autophagy, which was positively correlated with psoriatic severity in patients and mouse models and could be inhibited by mitogen-activated protein kinase (MAPK) family inactivation. The impairment of autophagic flux alleviated psoriasisform inflammation. We also found that an autophagy-based unconventional secretory pathway (autosecretion) dependent on ATG5 (autophagy related 5) and GORASP2 (golgi reassembly stacking protein 2) promoted psoriasiform KC inflammation. Moreover, the alarmin HMGB1 (high mobility group box 1) was more effective than other autosecretory proteins in regulating psoriasiform cutaneous inflammation. HMGB1 neutralization in autophagy-efficient KCs eliminated the differences in psoriasiform inflammation between Krt14+/+-Atg5f/f KCs and Krt14Cre/+-atg5f/f KCs, and conversely, recombinant HMGB1 almost completely restored psoriasiform inflammation in Krt14Cre/+-atg5f/f KCs in vivo. These results suggest that HMGB1-associated autosecretion plays a pivotal role in cutaneous inflammation. Finally, we demonstrated that Krt14Cre/+-hmgb1f/f mice displayed attenuated psoriatic inflammation due to the essential crosstalk between KC-specific HMGB1-associated autosecretion and γδT cells. Thus, this study uncovered a novel autophagy mechanism in psoriasis pathogenesis, and the findings imply the clinical significance of investigating and treating psoriasis.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AGER: advanced glycosylation end-product specific receptor; Anti-HMGB1: anti-HMGB1 neutralizing antibody; Anti-IL18: anti-IL18 neutralizing antibody; Anti-IL1B: anti-IL1B neutralizing antibody; ATG5: autophagy related 5; BAF: bafilomycin A1; BECN1: beclin 1; CASP1: caspase 1; CCL: C-C motif chemokine ligand; CsA: cyclosporine A; ctrl shRNA: lentivirus harboring shRNA against control; CXCL: C-X-C motif chemokine ligand; DCs: dendritic cells; DMEM: dulbecco's modified Eagle's medium; ELISA: enzyme-linked immunosorbent assay; EM: electron microscopy; FBS: fetal bovine serum; GORASP2 shRNA: lentivirus harboring shRNA against GORASP2; GORASP2/GRASP55: golgi reassembly stacking protein 2; GR1: a composite epitope between LY6 (lymphocyte antigen 6 complex) locus C1 and LY6 locus G6D antigens; H&E: hematoxylin and eosin; HMGB1: high mobility group box 1; HMGB1 shRNA: lentivirus harboring shRNA against HMGB1; IFNG/IFN-γ: interferon gamma; IL17A: interleukin 17A; IL18: interleukin 18; IL1A/IL-1α: interleukin 1 alpha; IL1B/IL-1ß: interleukin 1 beta; IL22/IL-22: interleukin 22; IL23A: interleukin 23 subunit alpha; IL23R: interleukin 23 receptor; IMQ: imiquimod; ITGAM/CD11B: integrin subunit alpha M; ITGAX/CD11C: integrin subunit alpha X; IVL: involucrin; KC: keratinocyte; KD: knockdown; KO: knockout; Krt14+/+-Atg5f/f mice: mice bearing an Atg5 flox allele, in which exon 3 of the Atg5 gene is flanked by two loxP sites; Krt14+/+-Hmgb1f/f: mice bearing an Hmgb1 flox allele, in which exon 2 to 4 of the Hmgb1 gene is flanked by two loxP sites; Krt14Cre/+-atg5f/f mice: keratinocyte-specific atg5 knockout mice generated by mating Atg5-floxed mice with mice expressing Cre recombinase under the control of the promoter of Krt4; Krt14Cre/+-hmgb1f/f mice: keratinocyte-specific hmgb1 knockout mice generated by mating Hmgb1-floxed mice with mice expressing Cre recombinase under the control of the promoter of Krt14; Krt14-Vegfa mice: mice expressing 164-amino acid Vegfa splice variant recombinase under the control of promoter of Krt14; LAMP1: lysosomal associated membrane protein 1; LDH: lactate dehydrogenase; LORICRIN: loricrin cornified envelope precursor protein; M5: TNF, IL1A, IL17A, IL22 and OSM in combination; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MKI67: marker of proliferation Ki-67; MTT: thiazolyl blue tetrazolium bromide; NFKB/NF-κB: nuclear factor kappa B; NHEKs: primary normal human epidermal keratinocytes; NS: not significant; OSM: oncostatin M; PASI: psoriasis area and severity index; PtdIns3K: class III phosphatidylinositol 3-kinase; qRT-PCR: quantitative RT-PCR; RELA/p65: RELA proto-oncogene, NF-kB subunit; rHMGB1: recombinant HMGB1; rIL18: recombinant interleukin 18; rIL1B: recombinant interleukin 1 beta; S100A: S100 calcium binding protein A; SQSTM1/p62: sequestosome 1; T17: IL17A-producing T; TCR: T-cell receptor; tcrd KO mice: tcrd (T cell receptor delta chain) knockout mice, which show deficient receptor expression in all adult lymphoid and epithelial organs; TLR: toll-like receptor; TNF/TNF-α: tumor necrosis factor; WOR: wortmannin; WT: wild-type; γδT17 cells: IL17A-producing γδ T cells.


Subject(s)
Autophagy/physiology , HMGB1 Protein/metabolism , Inflammation/metabolism , Keratinocytes/metabolism , Animals , Autophagy-Related Protein 5/metabolism , Interleukin-1beta/metabolism , Mice, Transgenic , NF-kappa B/metabolism , Proto-Oncogene Mas
SELECTION OF CITATIONS
SEARCH DETAIL
...