Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724832

ABSTRACT

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Subject(s)
Artemisinins , Brain Neoplasms , Glioblastoma , Glutamine , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Glutamine/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Artemisinins/therapeutic use , Artemisinins/pharmacology , Reactive Oxygen Species/metabolism , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Tumor Microenvironment , Apoptosis , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Cell Movement , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
2.
Medicine (Baltimore) ; 101(39): e30635, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36181110

ABSTRACT

BACKGROUND: CpG island methylator phenotype (CIMP) was closely related to the degree of pathological differentiation of tumors, and it's an important determinant of glioma pathogenicity. However, the molecular and pathological features of CIMP-positive glioma have not been fully elucidated. In addition, CIMP have been reported to be a useful prognostic marker in several human cancers, yet its prognostic value in gliomas is still controversial. Therefore, we aimed to evaluate gene mutations and pathological features of CIMP-positive glioma and explore the prognostic value of CIMP in gliomas. METHODS: We comprehensively searched PubMed, Embase, and MEDLINE for studies describing gene mutations, pathological features and overall survival of gliomas stratified by CIMP status. Odds ratios (OR), hazard ratios (HR), and their 95% confidence intervals (CI) were used to estimate the correlation between CIMP and the outcome parameters. RESULTS: Twelve studies with 2386 gliomas (1051 CIMP-positive and 1335 CIMP-negative) were included. Our results showed that CIMP was more frequent in isocitrate dehydrogenase 1 (IDH1)-mutated gliomas (OR 229.07; 95% CI 138.72-378.26) and 1p19q loss of heterozygosis (LOH) gliomas (OR 5.65; 95% CI 2.66-12.01). Pathological analysis showed that CIMP was common in low-malignant oligodendroglioma (OR 5.51; 95% CI 3.95-7.70) with molecular features including IDH1 mutations and 1p19q LOH, but rare in glioblastoma (OR 0.14; 95% CI 0.10-0.19). However, CIMP showed no obvious correlation with anaplastic oligoastrocytomas (OR 1.57; 95% CI 1.24-2.00) or oligoastrocytomas (OR 0.79; 95% CI 0.35-1.76). Concerning the prognosis, we found that CIMP-positive gliomas had longer overall survival (HR 0.57; 95% CI 0.97-0.16) than CIMP-negative gliomas. CONCLUSIONS: CIMP could be used as a potential independent prognostic indicator for glioma.


Subject(s)
Brain Neoplasms , Glioma , Oligodendroglioma , Brain Neoplasms/pathology , CpG Islands , DNA Methylation , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Phenotype , Prognosis
3.
Oncol Lett ; 16(2): 2478-2482, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30013640

ABSTRACT

Regulatory ability of micro-ribose nucleic acid-130a (miRNA-130a) in the proliferation and invasive growth of human brain glioma cells and its mechanism were investigated. RT-qPCR was used to analyze expression of miRNA-130a in U-87MG glioma specimens; lipidosome was used to mediate miRNA-130a mimic transfecting glioma cells and the expression of miRNA-130a was detected by using RT-qPCR after transfection; methyl thiazolyl tetrazolium (MTT) assay and flow cytometry (FCM) were adopted to evaluate the changes in biological characteristics of cell growth and proliferation; the migration and invasion abilities of tumor cells were measured through scratch assay and Transwell in vitro cell migration assay. In miRNA-130a mimic-transfected U-87MG cells, RT-qPCR showed that the expression of miRNA-130a was upregulated; MTT assay and FCM revealed that the cell growth was strengthened; scratch assay and Transwell in vitro cell migration assay verified that the migration and invasion abilities of cells were enhanced. In conclusion, the high expression of miRNA-130a can promote growth and invasion, indicating that miRNA-130a can be considered as a candidate target of gene therapy for glioma.

SELECTION OF CITATIONS
SEARCH DETAIL
...