Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Direct ; 8(2): e564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312996

ABSTRACT

Barley is one of the world's earliest domesticated crops, which is widely used for beer production, animal feeding, and health care. Barley seed germination, particularly in increasingly saline soils, is key to ensure the safety of crop production. However, the mechanism of salt-affected seed germination in barley remains elusive. Here, two different colored barley varieties were used to independently study the regulation mechanism of salt tolerance during barley seed germination. High salinity delays barley seed germination by slowing down starch mobilization efficiency in seeds. The starch plate test revealed that salinity had a significant inhibitory effect on α-amylase activity in barley seeds. Further, NaCl treatment down-regulated the expression of Amy1, Amy2 and Amy3 genes in germinated seeds, thereby inhibiting α-amylase activity. In addition, the result of embryogenic culture system in vitro showed that the shoot elongation of barley was significantly inhibited by salt stress. These findings indicate that it is a feasible idea to study the regulation mechanism of salinity on barley seed germination and embryo growth from the aspect of starch-related source-sink communication.

2.
BMC Plant Biol ; 23(1): 62, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36710329

ABSTRACT

BACKGROUND: Waterlogging is one of the major abiotic stresses in barley and greatly reduces grain yield and quality. To explore the mechanism controlling waterlogging tolerance in barley, physiological, anatomical and transcriptional analyses were performed in two contrasting barley varieties, viz. Franklin (susceptible) and TX9425 (tolerant). RESULTS: Compared to Franklin, TX9425 had more adventitious roots and aerenchymas and higher antioxidant enzyme activities. A total of 3064 and 5693 differentially expressed genes (DEGs) were identified in TX9425 after 24 h and 72 h of waterlogging treatment, respectively, while 2297 and 8462 DEGs were identified in Franklin. The results suggested that TX9425 was less affected by waterlogging stress after 72 h of treatment. The DEGs were enriched mainly in energy metabolism, hormone regulation, reactive oxygen species (ROS) scavenging, and cell wall-modifying enzymes. Alcohol dehydrogenase (ADH) plays an important role in response to waterlogging stress. We found that HvADH4 was significantly upregulated under waterlogging stress in TX9425. Transgenic Arabidopsis overexpressing HvADH4 displayed higher activity of antioxidant enzymes and was more tolerant to waterlogging than the wild type (WT). CONCLUSIONS: The current results provide valuable information that will be of great value for the exploration of new candidate genes for molecular breeding of waterlogging tolerance in barley.


Subject(s)
Arabidopsis , Hordeum , Hordeum/genetics , Arabidopsis/genetics , Antioxidants , Gene Expression Profiling , Plant Roots/genetics , Stress, Physiological/genetics
3.
Plant Dis ; 107(4): 1044-1053, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36089682

ABSTRACT

Soilborne pathogens destabilize the yields of Triticeae crops, including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Although genetic resistance derived from relatives of these species has been utilized to prevent rust diseases (i.e., in the wheat-rye 1BL-1RS translocation line), research on resistance against soilborne pathogens remains limited. Here, we performed field trials using 76 genotypes representing 28 Hordeum, six Triticum, and two Aegilops species to examine resistance against three soilborne bymoviruses: barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), and wheat yellow mosaic virus (WYMV). We also performed greenhouse tests using the soilborne fungal pathogen Fusarium pseudograminearum, which causes Fusarium crown rot (FCR). Using RT-PCR, we detected BaMMV and BaYMV in several Hordeum species, whereas WYMV induced systemic infection in the Triticum and Aegilops species. The identification of FCR susceptibility in all species examined suggests that F. pseudograminearum is a facultative fungal pathogen in Triticeae. Intraspecies variation in FCR disease severity was observed for several species, pointing to the possibility of exploring host resistance mechanisms. Therefore, by unlocking the host specificity of four soilborne pathogens in Hordeum species and their relatives, we obtained insights for the further exploration of wild sources of soilborne pathogen resistance for future wheat and barley improvement programs.


Subject(s)
Hordeum , Hordeum/microbiology , Host Specificity , Genotype , Triticum/microbiology
4.
Front Plant Sci ; 13: 1055213, 2022.
Article in English | MEDLINE | ID: mdl-36531390

ABSTRACT

Fusarium head blight (FHB) is a global wheat grain disease caused by Fusarium graminearum. Biological control of FHB is considered to be an alternative disease management strategy that is environmentally benign, durable, and compatible with other control measures. In this study, to screen antagonistic bacteria with the potential to against FHB, 45 strains were isolated from different tissues of wheat. Among them, seven strains appeared to effectively inhibit F. graminearum growth, the antagonistic bacterium named XY-1 showed a highly antagonistic effect against FHB using dual culture assays. The strain XY-1 was identified as Bacillus amyloliquefaciens by 16S rDNA sequence. Antibiotic tolerance of antagonistic bacteria showed that XY-1 had antagonistic activity against Colletotrichum gloeosporioides, Rhizoctonia solani, Sclerotium rolfsii, and Alternaria alternata. Nutrition tests showed that the most suitable carbon and nitrogen sources were glucose and beef extract, respectively. The optimum growth temperature and pH value were 28 ℃ and 7.4. Antibiotics tolerance cultivation showed that XY-1 had strong resistance to Chloramphenicol and Ampicillin. Wheat spikes inoculation antagonism tests showed that strain XY-1 displayed strong antifungal activity against F. graminearum. Our study laid a theoretical foundation for the application of strain XY-1 as a biological agent in the field to control FHB.

5.
Front Plant Sci ; 13: 1018379, 2022.
Article in English | MEDLINE | ID: mdl-36275526

ABSTRACT

The soil-borne yellow mosaic virus disease, which is caused by the bymoviruses barley yellow mosaic virus (BaYMV) and/or barley mild mosaic virus (BaMMV), seriously threatens winter barley production in Europe and East Asia. Both viruses are transmitted by the soil-borne plasmodiophorid Polymyxa graminis and are difficult to eliminate through chemical or physical measures in the field, making breeding for resistant cultivars the optimal strategy for disease control. The resistance locus rym1/11 was cloned encoding the host factor gene Protein Disulfide Isomerase Like 5-1 (PDIL5-1), whose loss-of-function variants confer broad-spectrum resistance to multiple strains of BaMMV/BaYMV. Most resistance-conferring variants have been identified in six-rowed barley landraces/historic cultivars, and their introgression into modern two-rowed malting cultivars is difficult because PDIL5-1 is located in a peri-centromeric region with suppressed recombination. In this study, we used CRISPR/Cas9 genome editing to modify PDIL5-1 in the BaYMV/BaMMV-susceptible elite malting barley cv. 'Golden Promise' and obtained the mutants pdil5-1-a and pdil5-1-b. PDIL5-1 in the pdil5-1-a mutant encodes a protein lacking a cysteine residue, and pdil5-1-b contains a protein-coding frameshift. Both mutants were completely resistant to BaYMV. The knockout mutant pdil5-1-b showed complete BaMMV resistance, while pdil5-1-a showed decreased viral accumulation but no disease symptoms if compared to 'Golden Promise'. Both PDIL5-1 edited lines, as well as the previously produced EMS-induced pdil5-1 mutant '10253-1-5' in the elite malting barley cv. 'Barke' background, displayed no growth or yield penalties in garden experiments or bymovirus-free field trials. Line '10253-1-5' showed improved resistance and yield performance compared to the wild-type and its sibling line when grown in infectious fields. Therefore, genome editing of the host factor gene PDIL5-1 could facilitate the breeding of barley varieties with resistance to bymoviruses.

6.
PeerJ ; 10: e13128, 2022.
Article in English | MEDLINE | ID: mdl-35317071

ABSTRACT

Background: The disease caused by Barley yellow mosaic virus (BaYMV) infection is a serious threat to autumn-sown barley (Hordeum vulgare L.) production in Europe, East Asia and Iran. Due to the rapid diversification of BaYMV strains, it is urgent to discover novel germplasm and genes to assist breeding new varieties with resistance to different BaYMV strains, thus minimizing the effect of BaYMV disease on barley cropping. Methods: A natural population consisting of 181 barley accessions with different levels of resistance to BaYMV disease was selected for field resistance identification in two separate locations (Yangzhou and Yancheng, Jiangsu Province, China). Additive main effects and multiplicative interaction (AMMI) analysis was used to identify accessions with stable resistance. Genome-wide association study (GWAS) of BaYMV disease resistance was broadly performed by combining both single nucleotide polymorphisms (SNPs) and specific molecular markers associated with the reported BaYMV disease resistance genes. Furthermore, the viral protein genome linked (VPg) sequences of the virus were amplified and analyzed to assess the differences between the BaYMV strains sourced from the different experimental sites. Results: Seven barley accessions with lower standardized Area Under the Disease Progress Steps (sAUDPS) index in every environment were identified and shown to have stable resistance to BaYMV disease in each assessed location. Apart from the reported BaYMV disease resistance genes rym4 and rym5, one novel resistance locus explaining 24.21% of the phenotypic variation was identified at the Yangzhou testing site, while two other novel resistance loci that contributed 19.23% and 19.79% of the phenotypic variation were identified at the Yancheng testing site, respectively. Further analysis regarding the difference in the VPg sequence of the predominant strain of BaYMV collected from these two testing sites may explain the difference of resistance loci differentially identified under geographically distinct regions. Our research provides novel genetic resources and resistance loci for breeding barley varieties for BaMYV disease resistance.


Subject(s)
Disease Resistance , Potyviridae , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Potyviridae/genetics
7.
Plant Dis ; 106(8): 2201-2210, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35077235

ABSTRACT

Plant viruses transmitted by the soilborne plasmodiophorid Polymyxa graminis constantly threaten global production of cereal crops. Although the yellow mosaic virus disease of barley has been known to be present for a long time in China, the understanding of the diversity of the viral pathogens and their interactions with host resistance remains limited. In this study, we conducted a nationwide survey of P. graminis and the barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) it transmits, followed by genomic and pathogenic diversity analyses of both viruses. BaYMV and BaMMV were found exclusively in the region downstream of the Yangtze River, despite the national distribution of its transmission vector P. graminis. Analysis of the genomic variations of BaYMV and BaMMV revealed an elevated rate of nonsynonymous substitutions in the viral genome-linked protein (VPg), in which most substitutions were located in its interaction surface with the host eukaryotic translation initiation factor 4E (eIF4E). VPg sequence diversity was associated with the divergence in virus pathogenicity that was identified through multiple field trials. The majority of the resistance genes, including the widely applied rym4 and rym5 (alleles of eIF4E), as well as the combination of rym1/11 and rym5, are not sufficient to protect cultivated barley against viruses in China. Collectively, these results provide insights into virulence specificity and interaction mode with host resistance in cultivated barley, which has significant implications in breeding for the broad-spectrum resistance barley varieties.


Subject(s)
Hordeum , Eukaryotic Initiation Factor-4E/genetics , Genomics , Hordeum/genetics , Plant Breeding , Plant Diseases , Potyviridae
8.
Front Plant Sci ; 13: 1048939, 2022.
Article in English | MEDLINE | ID: mdl-36589094

ABSTRACT

Waterlogging is the primary abiotic factor that destabilizes the yield and quality of barley (Hordeum vulgare L.). However, the genetic basis of waterlogging tolerance remains poorly understood. In this study, we conducted a genome-wide association study (GWAS) by involving 106,131 single-nucleotide polymorphisms (SNPs) with a waterlogging score (WLS) of 250 barley accessions in two years. Out of 72 SNPs that were found to be associated with WLS, 34 were detected in at least two environments. We further performed the transcriptome analysis in root samples from TX9425 (waterlogging tolerant) and Franklin (waterlogging sensitive), resulting in the identification of 5,693 and 8,462 differentially expressed genes (DEGs) in these genotypes, respectively. The identified DEGs included various transcription factor (TF) genes, primarily including AP2/ERF, bZIP and MYB. By combining GWAS and RNA-seq, we identified 27 candidate genes associated with waterlogging, of which three TFs (HvDnaJ, HvMADS and HvERF1) were detected in multiple treatments. Moreover, by overexpressing barley HvERF1 in Arabidopsis, the transgenic lines were detected with enhanced waterlogging tolerance. Altogether, our results provide new insights into the genetic mechanisms of waterlogging, which have implications in the molecular breeding of waterlogging-tolerant barley varieties.

9.
BMC Plant Biol ; 21(1): 560, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823470

ABSTRACT

BACKGROUND: Barley yellow mosaic disease (BYMD) caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) seriously threatens the production of winter barley. Cultivating and promoting varieties that carry disease-resistant genes is one of the most powerful ways to minimize the disease's effect on yield. However, as the BYMD virus mutates rapidly, resistance conferred by the two cloned R genes to the virus had been overcome by new virus strains. There is an urgent need for novel resistance genes in barley that convey sustainable resistance to newly emerging virus strains causing BYMD. RESULTS: A doubled haploid (DH) population derived from a cross of SRY01 (BYMD resistant wild barley) and Gairdner (BYMD susceptible barley cultivar) was used to explore for QTL of resistance to BYMD in barley. A total of six quantitative trait loci (qRYM-1H, qRYM-2Ha, qRYM-2Hb, qRYM-3H, qRYM-5H, and qRYM-7H) related to BYMD resistance were detected, which were located on chromosomes 1H, 2H, 3H, 5H, and 7H. Both qRYM-1H and qRYM-2Ha were detected in all environments. qRYM-1H was found to be overlapped with rym7, a known R gene to the disease, whereas qRYM-2Ha is a novel QTL on chromosome 2H originated from SRY01, explaining phenotypic variation from 9.8 to 17.8%. The closely linked InDel markers for qRYM-2Ha were developed which could be used for marker-assisted selection in barley breeding. qRYM-2Hb and qRYM-3H were stable QTL for specific resistance to Yancheng and Yangzhou virus strains, respectively. qRYM-5H and qRYM-7H identified in Yangzhou were originated from Gairdner. CONCLUSIONS: Our work is focusing on a virus disease (barley yellow mosaic) of barley. It is the first report on BYMD-resistant QTL from wild barley accessions. One novel major QTL (qRYM-2Ha) for the resistance was detected. The consistently detected new genes will potentially serve as novel sources for achieving pre-breeding barley materials with resistance to BYMD.


Subject(s)
Disease Resistance/genetics , Hordeum/genetics , Hordeum/virology , Plant Diseases/genetics , Potyviridae/pathogenicity , Quantitative Trait Loci , Chromosomes, Plant , Crops, Agricultural/genetics , Crops, Agricultural/virology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Haploidy , Plant Breeding/methods
10.
Int J Mol Sci ; 21(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183237

ABSTRACT

Waterlogging stress significantly affects the growth, development, and productivity of crop plants. However, manipulation of gene expression to enhance waterlogging tolerance is very limited. In this study, we identified an ethylene-responsive factor from barley, which was strongly induced by waterlogging stress. This transcription factor named HvERF2.11 was 1158 bp in length and encoded 385 amino acids, and mainly expressed in the adventitious root and seminal root. Overexpression of HvERF2.11 in Arabidopsis led to enhanced tolerance to waterlogging stress. Further analysis of the transgenic plants showed that the expression of AtSOD1, AtPOD1 and AtACO1 increased rapidly, while the same genes did not do so in non-transgenic plants, under waterlogging stress. Activities of antioxidant enzymes and alcohol dehydrogenase (ADH) were also significantly higher in the transgenic plants than in the non-transgenic plants under waterlogging stress. Therefore, these results indicate that HvERF2.11 plays a positive regulatory role in plant waterlogging tolerance through regulation of waterlogging-related genes, improving antioxidant and ADH enzymes activities.


Subject(s)
Arabidopsis/metabolism , Hordeum/genetics , Plant Proteins/genetics , Stress, Physiological , Transcription Factors/genetics , Arabidopsis/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transgenes
11.
Theor Appl Genet ; 132(6): 1777-1788, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30815718

ABSTRACT

KEY MESSAGE: A novel rare allele of the barley host factor gene eIF4E for BaMMV/BaYMV infection was identified in an Iranian landrace that showed broad resistance to barley yellow mosaic virus disease, and molecular markers facilitating efficient selection were developed. The soil-borne yellow mosaic virus disease caused by different strains of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) is a major threat to winter barley (Hordeum vulgare) production in Europe and East Asia. However, the exploration of resistant germplasm or casual genes for barley breeding is rather limited in relation to the rapid diversification of viral strains. Here, we identified an Iranian barley landrace 'HOR3298,' which represented complete resistance to BaYMV and BaMMV. In contrast to rym4 and rym5, which act as the predominant source in Europe and East Asia for breeding resistant cultivars over decades and which have been overcome by several virulent isolates, this landrace showed broad-spectrum resistance to multiple isolates of BaYMV/BaMMV in the fields of Germany and China. By employment of bulked segregant RNA sequencing, test for allelism, and haplotype analysis, a recessive resistance gene in 'HOR3298' was genetically mapped coincident with the host factor eukaryotic translation initiation factor 4E (eIF4E, causal gene of rym4 and rym5). The eIF4EHOR3298 allele encoded for a novel haplotype that contained an exclusive nucleotide mutation (G565A) in the coding sequence. The easily handled markers were developed based on the exclusively rare variation, providing precise selection of this allele. Thus, this work provided a novel reliable resistance source and the feasible marker-assisted selection assays that can be used in breeding for barley yellow mosaic virus disease resistance in cultivated barley.


Subject(s)
Disease Resistance/genetics , Eukaryotic Initiation Factor-4E/genetics , Genetic Markers , Hordeum/genetics , Plant Diseases/genetics , Potyviridae/pathogenicity , Gene Frequency , High-Throughput Nucleotide Sequencing/methods , Hordeum/virology , Phenotype , Plant Diseases/virology , Potyviridae/isolation & purification
12.
Sci Rep ; 8(1): 9655, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941955

ABSTRACT

Waterlogging is one of the major abiotic stresses that affects barley production and yield quality. Proteomics techniques have been widely utilized to explore the mechanisms involved in the responses to abiotic stress. In this study, two barley genotypes with contrasting responses to waterlogging stress were analyzed with proteomic technology. The waterlogging treatment caused a greater reduction in biomass and photosynthetic performance in the waterlogging-sensitive genotype TF57 than that in the waterlogging-tolerant genotype TF58. Under waterlogging stress, 30, 30, 20 and 20 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves, adventitious roots, nodal roots and seminal roots, respectively. Among these proteins, photosynthesis-, metabolism- and energy-related proteins were differentially expressed in the leaves, with oxygen-evolving enhancer protein 1, ATP synthase subunit and heat shock protein 70 being up-regulated in TF58. Pyruvate decarboxylase (PDC), 1-amino cyclopropane 1-carboxylic acid oxidase (ACO), glutamine synthetase (GS), glutathione S-transferases (GST) and beta-1, 3-glucanase in adventitious, nodal and seminal roots were more abundant in TF58 than those in TF57 under waterlogging stress. Ten representative genes were selected for validation by qRT-PCR in different genotypes with known waterlogging tolerance, and the expression levels of three candidate genes (PDC, ACO and GST) increased in the roots of all genotypes in response to the waterlogging stress. These three genes might play a significant role in the adaptation process of barley under waterlogging stress. The current results partially determined the mechanisms of waterlogging tolerance and provided valuable information for the breeding of barley with enhanced tolerance to waterlogging.


Subject(s)
Hordeum/drug effects , Hordeum/physiology , Proteomics , Stress, Physiological/drug effects , Water/pharmacology , Cell Hypoxia , Dose-Response Relationship, Drug , Genotype , Hordeum/cytology , Hordeum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...