Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(2): 1223-1235, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38117938

ABSTRACT

Nanoparticle growth influences atmospheric particles' climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics' contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 µg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32-46%) as 4-40 nm particles grow. Alkanes also contribute 19-35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.


Subject(s)
Volatile Organic Compounds , Atmosphere/chemistry , Gases , Alkanes , Oxidation-Reduction , Aerosols
2.
J Phys Chem A ; 125(36): 7803-7812, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34492182

ABSTRACT

We report data that suggest complexes with alkali cations capping the portals of cucurbit[5]uril (CB[5]) bind halide anions size-selectively as observed in the gas phase: Cl- binds inside the CB[5] cavity, Br- is observed both inside and outside, and I- binds weakly outside. This is reflected in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments: all detected Cl- complexes dissociate at higher energies, and Br- complexes exhibit unusual bimodal dissociation behavior, with part of the ion population dissociating at very low energies and the remainder dissociating at significantly higher energies comparable to those observed for Cl-. Decoherence cross sections measured in SF6 using cross-sectional areas by Fourier transform ion cyclotron resonance techniques for [CB[5] + M2X]+ (M = Na, X = Cl or Br) are comparable to or less than that of [CB[5] + Na]+ over a wide energy range, suggesting that Cl- or Br- in these complexes are bound inside the CB[5] cavity. In contrast, [CB[5] + K2Br]+ has a cross section measured about 20% larger than that of [CB[5] + Na]+, suggesting external binding that may correspond with the weakly bound component seen in SORI. While I- complexes with alkali cation caps were not observed, alkaline earth iodides with CB[5] yielded complexes with cross sections 5-10% larger than that of [CB[5] + Na]+, suggesting externally bound iodide. Geometry optimization at the M06-2X/6-31+G* level of ab initio theory suggests that internal anion binding is energetically favored by approximately 50-200 kJ mol-1 over external binding; thus, the externally bound complexes observed experimentally must be due to large energetic barriers hindering the passing of large anions through the CB[5] portal, preventing access to the interior. Calculation of the barriers to anion egress using MMFF//M06-2X/6-31+G* theory supports this idea and suggests that the size-selective binding we observe is due to anion size-dependent differences in the barriers.

3.
Environ Sci Technol ; 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34338506

ABSTRACT

Molecular clustering is the initial step of atmospheric new particle formation (NPF) that generates numerous secondary particles. Using two online mass spectrometers with and without a chemical ionization inlet, we characterized the neutral clusters and the naturally charged ion clusters during NPF periods in urban Beijing. In ion clusters, we observed pure sulfuric acid (SA) clusters, SA-amine clusters, SA-ammonia (NH3) clusters, and SA-amine-NH3 clusters. However, only SA clusters and SA-amine clusters were observed in the neutral form. Meanwhile, oxygenated organic molecule (OOM) clusters charged by a nitrate ion and a bisulfate ion were observed in ion clusters. Acid-base clusters correlate well with the occurrence of sub-3 nm particles, whereas OOM clusters do not. Moreover, with the increasing cluster size, amine fractions in ion acid-base clusters decrease, while NH3 fractions increase. This variation results from the reduced stability differences between SA-amine clusters and SA-NH3 clusters, which is supported by both quantum chemistry calculations and chamber experiments. The lower average number of dimethylamine (DMA) molecules in atmospheric ion clusters than the saturated value from controlled SA-DMA nucleation experiments suggests that there is insufficient DMA in urban Beijing to fully stabilize large SA clusters, and therefore, other basic molecules such as NH3 play an important role.

4.
Environ Sci Technol ; 54(21): 13498-13508, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33091300

ABSTRACT

Atmospheric amines can enhance methanesulfonic acid (MSA)-driven new particle formation (NPF), but the mechanism is fundamentally different compared to that of the extensively studied sulfuric acid (SA)-driven process. Generally, the enhancing potentials of amines in SA-driven NPF follow the basicity, while this is not the case for MSA-driven NPF, where structural effects dominate, making MSA-driven NPF more prominent for methylamine (MA) compared to dimethylamine (DMA). Therefore, probing structural factors determining the enhancing potentials of amines on MSA-driven NPF is key to fully understanding the contribution of MSA to NPF. Here, we performed a comparative study on DMA and MA enhancing MSA-driven NPF by examining cluster formation using computational methods. The results indicate that DMA-MSA clusters are more stable than the corresponding MA-MSA clusters for cluster sizes up to (DMA)2(MSA)2, indicating that the basicity of amines dominates the initial cluster formation. The methyl groups of DMA were found to present significant steric hindrance beyond the (DMA)2(MSA)2 cluster and this adds to the lower hydrogen bonding capacity of DMA, making the cluster growth less favorable compared to MA. This study implies that several amines could synergistically enhance MSA-driven NPF by maximizing the advantage of different amines in different amine-MSA cluster growth stages.


Subject(s)
Amines , Mesylates , Hydrogen Bonding
5.
Environ Sci Technol ; 53(24): 14387-14397, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31710478

ABSTRACT

Amines are recognized as significant enhancing species on methanesulfonic acid (MSA)-driven new particle formation (NPF). Monoethanolamine (MEA) has been detected in the atmosphere, and its concentration could be significantly increased once MEA-based postcombustion CO2 capture technology is widely implemented. Here, we evaluated the enhancing potential of MEA on MSA-driven NPF by examining the formation of MEA-MSA clusters using a combination of quantum chemical calculations and kinetics modeling. The results indicate that the -OH group of MEA can form at least one hydrogen bond with MSA or MEA in all MEA-containing clusters. The enhancing potential of MEA is higher than that of the strongest enhancing agent known so far, methylamine (MA), for MSA-driven NPF. Such high enhancing potential can be ascribed to not only the higher gas-phase basicity but also the role of the additional -OH group of MEA in increasing the binding free energy by forming additional hydrogen bonds. This clarifies the importance of hydrogen-bonding capacity from the nonamino group of amines in enhancing MSA-driven NPF. The main growth pathway for MEA-MSA clusters proceeds via the initial formation of the (MEA)1(MSA)1 cluster, followed by alternately adding one MSA and one MEA molecule, differing from the case of MA-MSA clusters.


Subject(s)
Ethanolamine , Mesylates , Atmosphere , Hydrogen Bonding
6.
Environ Sci Technol ; 53(15): 8785-8795, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31287292

ABSTRACT

Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5-0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.


Subject(s)
Ethanolamine , Sulfuric Acids , Kinetics , Piperazine , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...