Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38189150

ABSTRACT

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Heart Failure , Humans , Mice , Animals , Atrial Fibrillation/genetics , Gene Regulatory Networks , Calcium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Heart Atria , Heart Failure/genetics , Genomics , GATA4 Transcription Factor/genetics
2.
Curr Cardiol Rep ; 25(5): 307-314, 2023 05.
Article in English | MEDLINE | ID: mdl-37052760

ABSTRACT

PURPOSE OF REVIEW: In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS: Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.


Subject(s)
Cell Nucleus , Mechanotransduction, Cellular , Humans , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Nuclear Lamina/genetics , Nuclear Lamina/metabolism , Chromatin/genetics , Chromatin/metabolism , Biophysics
3.
Genet Med ; 23(4): 637-644, 2021 04.
Article in English | MEDLINE | ID: mdl-33244166

ABSTRACT

PURPOSE: Hardikar syndrome (MIM 612726) is a rare multiple congenital anomaly syndrome characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, but with preserved cognition. Only four patients have been reported previously, and none had a molecular diagnosis. Our objective was to identify the genetic basis of Hardikar syndrome (HS) and expand the phenotypic spectrum of this disorder. METHODS: We performed exome sequencing on two previously reported and five unpublished female patients with a clinical diagnosis of HS. X-chromosome inactivation (XCI) studies were also performed. RESULTS: We report clinical features of HS with previously undescribed phenotypes, including a fatal unprovoked intracranial hemorrhage at age 21. We additionally report the discovery of de novo pathogenic nonsense and frameshift variants in MED12 in these seven individuals and evidence of extremely skewed XCI in all patients with informative testing. CONCLUSION: Pathogenic missense variants in the X-chromosome gene MED12 have previously been associated with Opitz-Kaveggia syndrome, Lujan syndrome, Ohdo syndrome, and nonsyndromic intellectual disability, primarily in males. We propose a fifth, female-specific phenotype for MED12, and suggest that nonsense and frameshift loss-of-function MED12 variants in females cause HS. This expands the MED12-associated phenotype in females beyond intellectual disability.


Subject(s)
Intellectual Disability , Mediator Complex/genetics , Mental Retardation, X-Linked , Retinitis Pigmentosa , Adult , Cholestasis , Cleft Palate , Female , Genes, X-Linked , Humans , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Phenotype , Young Adult
4.
Am J Med Genet A ; 182(12): 3035-3039, 2020 12.
Article in English | MEDLINE | ID: mdl-33016642

ABSTRACT

A range of clinical findings have been associated with heterozygous mutations in the Beta Tubulin (TUBB) gene, including microcephaly, structural brain abnormalities, intellectual disability, and skin creases. We report a 5-year-old male who presented for evaluation of cleft palate, cardiac defects, growth retardation, hemivertebrae causing scoliosis, and preauricular skin tags. Previous clinical exome sequencing of this patient was nondiagnostic, but reanalysis in the research setting identified a de novo missense c. 925C>G p.(Arg309Gly) mutation in TUBB. This mutation was not found in population allele frequency databases, and was classified to be likely pathogenic. This patient shares some phenotypic characteristics with previous reported patients of TUBB mutations of the two TUBB-related phenotypes: "Cortical dysplasia, complex, with other brain malformations 6" [MIM 615771] and "Circumferential Skin Creases Kunze type (CSC-KT)" [MIM 156610], but has no excess skin creases or structural brain anomalies. We also report previously undescribed features, including transposition of the great arteries and vertebral fusion, thus representing phenotype expansion of TUBB-associated disorders.


Subject(s)
Abnormalities, Multiple/diagnosis , Intellectual Disability/pathology , Microcephaly/diagnosis , Mutation, Missense , Tubulin/genetics , Abnormalities, Multiple/genetics , Adult , Child, Preschool , Female , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Young Adult
5.
Circ Res ; 127(2): e28-e43, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32347164

ABSTRACT

RATIONALE: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE: We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS: Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS: ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.


Subject(s)
Atrioventricular Node/metabolism , Heart Rate , Zonula Occludens-1 Protein/metabolism , Animals , Atrioventricular Node/physiology , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Potassium Channels, Voltage-Gated/metabolism , Zonula Occludens-1 Protein/genetics , Gap Junction alpha-5 Protein
6.
J Clin Invest ; 129(11): 4937-4950, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31609246

ABSTRACT

Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.


Subject(s)
Atrial Fibrillation , Calcium Signaling/genetics , Calcium/metabolism , Genetic Loci , Homeostasis/genetics , Sarcoplasmic Reticulum , Transcription Factors , Animals , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Genome-Wide Association Study , Heart Atria/metabolism , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Mice , Risk Factors , Sarcoplasmic Reticulum/genetics , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Elife ; 82019 03 21.
Article in English | MEDLINE | ID: mdl-30896405

ABSTRACT

Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca2+ homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca2+ sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca2+-dependent pathway for AF risk.


Subject(s)
Atrial Fibrillation/physiopathology , Calcium/metabolism , Mutant Proteins/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , T-Box Domain Proteins/metabolism , Animals , Cations, Divalent/metabolism , Cells, Cultured , Disease Models, Animal , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , T-Box Domain Proteins/deficiency
8.
Elife ; 62017 12 27.
Article in English | MEDLINE | ID: mdl-29280435

ABSTRACT

The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5-mutant mouse atria, identifying ~2600 novel Tbx5-dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5-dependent ncRNA transcription provided a quantitative metric of Tbx5-dependent enhancer activity, correlating with target gene expression. We identified RACER, a novel Tbx5-dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2. We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.


Subject(s)
Enhancer Elements, Genetic , Gene Regulatory Networks , RNA, Untranslated/biosynthesis , T-Box Domain Proteins/metabolism , Transcription, Genetic , Animals , Heart/physiology , Mice , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...