Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403920, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635463

ABSTRACT

The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.

2.
Adv Sci (Weinh) ; 10(21): e2301261, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127898

ABSTRACT

The efficient CO2 electroreduction into high-value products largely relies on the CO2 adsorption/activation or electron-transfer of electrocatalysts, thus site-specific functionalization methods that enable boosted related interactions of electrocatalysts are much desired. Here, an oriented coordination strategy is reported to introduce N-rich auxiliary (i.e., hexamethylenetetramine, HMTA) into metalloporphyrin metal organic frameworks (MOFs) to synthesize a series of site-specific functionalized electrocatalysts (HMTA@MOF-545-M, M = Fe, Co, and Ni) and they are successfully applied in light-assisted CO2 electroreduction. Noteworthy, thus-obtained HMTA@MOF-545-Co presents approximately two times enhanced CO2 adsorption-enthalpy and electrochemical active surface-area with largely decreased impedance-value after modification, resulting in almost twice higher CO2 electroreduction performance than its unmodified counterpart. Besides, its CO2 electroreduction performance can be further improved under light-illumination and displays superior FECO (≈100%), high CO generation rate (≈5.11 mol m-2  h-1 at -1.1 V) and energy efficiency (≈70% at -0.7 V). Theoretical calculations verify that the oriented coordination of HMTA can increase the charge density of active sites, almost doubly enhance the CO2 adsorption energy, and largely reduce the energy barrier of rate determining step for the boosted performance improvement. This work might promote the development of modifiable porous crystalline electrocatalysts in high-efficiency CO2 electroreduction.

3.
ACS Appl Mater Interfaces ; 13(46): 54959-54966, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34766753

ABSTRACT

Metal-organic frameworks (MOFs) with plenty of active sites and high porosity have been considered as an excellent platform for the electroreduction of CO2, yet they are still restricted by the low conductivity or low efficiency. Herein, we insert the electron-conductive polypyrrole (PPy) molecule into the channel of MOFs through the in situ polymerization of pyrrole in the pore of MOF-545-Co to increase the electron-transfer ability of MOF-545-Co and the obtained hybrid materials present excellent electrocatalytic CO2RR performance. For example, FECO of PPy@MOF-545-Co can reach up to 98% at -0.8 V, almost 2 times higher than that of bare MOF-545-Co. The high performance might be attributed to the incorporation of PPy that can serve as electric cables in the channel of MOF to facilitate electron transfer during the CO2RR process. This attempt might provide new insights to improve the electrocatalytic performance of MOFs for CO2RR.

4.
RSC Adv ; 9(30): 17179-17182, 2019 May 29.
Article in English | MEDLINE | ID: mdl-35519886

ABSTRACT

A high-efficiency drug delivery system has been successfully constructed based on visible-light triggered binding and releasing between tetra-ortho-methoxy-substituted azobenzene (mAzo) and ß-cyclodextrin (ß-CD) modified mesoporous silica nanoparticles. The drug releasing efficiency is calculated to be 56%. The high-efficiency visible-light-triggered drug delivery system may afford great potential for cancer therapy.

5.
Meat Sci ; 117: 137-46, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26971310

ABSTRACT

Beef meats without pretreatment (CK) or pretreated with different volume ratios of carbon monoxide and ozone of 100%CO (T1), 2%O3+98%CO (T2), 5%O3+95%CO (T3) and 10%O3+90%CO (T4) using modified atmosphere packages for 1.5h, after that they were vacuum-packaged and stored in 0°C refrigerator for 46days. The surface color a* values and sensory scores of T1, T2, T3 and T4 were significant higher than CK (p<0.05) during storage. In the mid and later storage, the drip loss, total viable counts (TVC), metmyoglobin (met-Mb), thiobarbituric acid reactive substances (TBARS), total volatile basic nitrogen (TVB-N) and pH of T1, T2, T3 and T4 were significantly lower than CK (p<0.05), and these values of T2, T3 and T4 were significantly lower than T1 in the later storage. In conclusion, O3 in the combination didn't affect the color-developing effect of CO, and could help CO maintain the meat quality. Therefore, the pretreatment of CO combined with O3 at certain concentrations can be a promising technique to maintain the quality of beef meats.


Subject(s)
Carbon Monoxide/chemistry , Food Packaging/methods , Food Preservation/methods , Red Meat/analysis , Adult , Animals , Cattle , Food Analysis , Humans , Hydrogen-Ion Concentration , Ozone/chemistry , Sensation , Taste , Time Factors , Vacuum , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...