Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Appl Stat ; 18(1): 487-505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38577266

ABSTRACT

Many genetic studies contain rich information on longitudinal phenotypes that require powerful analytical tools for optimal analysis. Genetic analysis of longitudinal data that incorporates temporal variation is important for understanding the genetic architecture and biological variation of complex diseases. Most of the existing methods assume that the contribution of genetic variants is constant over time and fail to capture the dynamic pattern of disease progression. However, the relative influence of genetic variants on complex traits fluctuates over time. In this study, we propose a retrospective varying coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on longitudinal binary traits. We model dynamic genetic effect using smoothing splines, estimate model parameters by maximizing a double penalized quasi-likelihood function, design a joint test using a Cauchy combination method, and evaluate statistical significance via a retrospective approach to achieve robustness to model misspecification. Through simulations we illustrated that the retrospective varying-coefficient test was robust to model misspecification under different ascertainment schemes and gained power over the association methods assuming constant genetic effect. We applied RVMMAT to a genome-wide association analysis of longitudinal measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Pathway analysis identified two important pathways related to G-protein signaling and DNA damage. Our results demonstrated that RVMMAT could detect biologically relevant loci and pathways in a genome scan and provided insight into the genetic architecture of hypertension.

2.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398075

ABSTRACT

As human complex diseases are influenced by the interplay of genes and environment, detecting gene-environment interactions (G×E) can shed light on biological mechanisms of diseases and play an important role in disease risk prediction. Development of powerful quantitative tools to incorporate G×E in complex diseases has potential to facilitate the accurate curation and analysis of large genetic epidemiological studies. However, most of existing methods that interrogate G×E focus on the interaction effects of an environmental factor and genetic variants, exclusively for common or rare variants. In this study, we proposed two tests, MAGEIT_RAN and MAGEIT_FIX, to detect interaction effects of an environmental factor and a set of genetic markers containing both rare and common variants, based on the MinQue for Summary statistics. The genetic main effects in MAGEIT_RAN and MAGEIT_FIX are modeled as random or fixed, respectively. Through simulation studies, we illustrated that both tests had type I error under control and MAGEIT_RAN was overall the most powerful test. We applied MAGEIT to a genome-wide analysis of gene-alcohol interactions on hypertension in the Multi-Ethnic Study of Atherosclerosis. We detected two genes, CCNDBP1 and EPB42, that interact with alcohol usage to influence blood pressure. Pathway analysis identified sixteen significant pathways related to signal transduction and development that were associated with hypertension, and several of them were reported to have an interactive effect with alcohol intake. Our results demonstrated that MAGEIT can detect biologically relevant genes that interact with environmental factors to influence complex traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...