Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Drug Resist ; 16: 7247-7253, 2023.
Article in English | MEDLINE | ID: mdl-38023399

ABSTRACT

Purpose: Nocardia gipuzkoensis is a novel species that solely identified in patients with pulmonary infections by far. Growing evidence showed the excellent performance of metagenomics next-generation sequencing (mNGS) on pathogenic identification, especially for new species. Here, we described the first case of an elderly female patient suddenly suffering from neurological disorders owing to N. gipuzkoensis infection. And linezolid could effectively treat N. gipuzkoensis infection. Patients and Methods: The results of imaging, laboratory cultures, and mNGS, as well as therapeutic process are shared. Results: An elderly female patient suddenly suffered from neurological disorders with dysphasia and right limb trembles under no obvious causes. Subsequently, she was diagnosed as intracranial space-occupying lesions by magnetic resonance imaging (MRI). The isolate from brain secretion was further identified as N. gipuzkoensis through mNGS. The targeted therapy with linezolid according to the antimicrobial susceptibility was used to treat cerebral abscess induced by N. gipuzkoensis. During the follow-up, no relapse was observed for the patient after surgery for 104 days. Conclusion: Cerebral abscess induced by N. gipuzkoensis is rare disorder with high mortality. mNGS has been identified as a promising tool in pathogen diagnosis for timely therapy. Linezolid as one of the antimicrobial drugs could effectively treat N. gipuzkoensis infection and prevent adverse outcomes.

2.
Front Cell Infect Microbiol ; 13: 1229284, 2023.
Article in English | MEDLINE | ID: mdl-37671147

ABSTRACT

Background and Aims: The incidence of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) has been on the rise in China over the past five years, potentially leading to nosocomial epidemics. This study investigates the first outbreak of CRKP in the Second Affiliated Hospital of Jiaxing University. Methods: Between February 2021 and March 2022, 21 clinical isolates of OXA-232-producing CRKP were recovered from 16 patients in the Second Affiliated Hospital of Jiaxing University. We conducted antimicrobial susceptibility tests, whole genome sequencing, and bioinformatics to determine the drug resistance profile of these clinical isolates. Results: Whole-genome sequencing revealed that all 21 OXA-232-producing CRKP strains belonged to the sequence type 15 (ST15) and shared similar resistance, virulence genes, and plasmid types, suggesting clonal transmission between the environment and patients. Integrated genomic and epidemiological analysis traced the outbreak to two clonal transmission clusters, cluster 1 and cluster 2, including 14 and 2 patients. It was speculated that the CRKP transmission mainly occurred in the ICU, followed by brain surgery, neurosurgery, and rehabilitation department. Phylogenetic analysis indicated that the earliest outbreak might have started at least a year before the admission of the index patient, and these strains were closely related to those previously isolated from two major adjacent cities, Shanghai and Hangzhou. Comparative genomics showed that the IncFII-type and IncHI1B-type plasmids of cluster 2 had homologous recombination at the insertion sequence sites compared with the same type of plasmids in cluster 1, resulting in the insertion of 4 new drug resistance genes, including TEM-1, APH(6)-Id, APH(3'')-Ib and sul2. Conclusions: Our study observed the clonal spread of ST15 OXA-232-producing between patients and the hospital environment. The integration of genomic and epidemiological data offers valuable insights and facilitate the control of nosocomial transmission.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Cross Infection , Humans , Carbapenems , China , Disease Outbreaks , Hospitals, Teaching , Klebsiella pneumoniae , Phylogeny
4.
Exp Cell Res ; 394(1): 112145, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32561286

ABSTRACT

As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.


Subject(s)
Glucose/metabolism , Glucose/pharmacology , Insulin/pharmacology , Prostatic Hyperplasia/drug therapy , Prostatic Neoplasms/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Humans , Insulin Resistance/physiology , Male , Mitogen-Activated Protein Kinase Kinases , Prostate/drug effects , Prostate/metabolism , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects
5.
Exp Ther Med ; 17(1): 835-846, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30651870

ABSTRACT

Oxidative stress has been reported to serve an important role in the development and progression of diabetic nephropathy (DN). Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells promotes renal fibrosis in DN, while the mechanism of reactive oxygen species (ROS)-mediated EMT is not fully understood. The aim of the present study was to investigate the effect of high glucose-induced ROS on the activation of the transforming growth factor (TGF)-ß1/phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in a normal rat kidney tubular epithelial cell line (NRK-52E) and rats with type 1 diabetes. In vitro, high glucose-stimulated ROS production resulted in increased TGF-ß1 expression as well as an increase in the Akt and mTOR phosphorylation ratio, resulting in EMT. When cells were pre-treated with ROS inhibitors, changes in TGF-ß1, Akt and mTOR were significantly ameliorated. In vivo, diabetic rats experienced a significant decline in renal function and severe renal fibrosis compared with control rats at 8 weeks following streptozocin injection. Levels of malondialdehyde and TGF-ß1/PI3K/Akt/mTOR pathway activation were increased in the renal cortex of rats with diabetes compared with the control rats. Furthermore, renal fibrosis was further aggravated in DN compared with the control rats. The results of the present study suggest that ROS serves an important role in mediating high glucose-induced EMT and inhibits activation of the TGF-ß1/PI3K/Akt/mTOR pathway. ROS may therefore have potential as a treatment approach to prevent renal fibrosis in DN.

6.
Iran J Basic Med Sci ; 22(10): 1132-1137, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31998453

ABSTRACT

OBJECTIVES: Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis. MATERIALS AND METHODS: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy activity were assessed with LC3-II conversion and puncta formation by western blot and fluorescence imaging in starved and normal cultured HeLa cells. Autophagy flux was measured in the presence of NH4Cl. Wortmannin was used to inhibit autophagy. Cell viability and apoptosis were detected with cell counting kit-8 (CCK-8) and fluorescence-activated cell sorting (FACS) assay, respectively. RESULTS: Mitofilin expression was down-regulated in starved HeLa cells. In established mitofilin stable knockdown cell lines, LC3-II conversion and puncta formation were detected, which are both hallmarks of autophagy, under both basal and starvation conditions. Mitofilin down-regulation decreased LC3-II conversion and puncta formation, which indicates that loss of mitofilin function inhibits both basal and starvation-induced autophagy activity. CCK-8 and FACS analysis confirmed mitofilin involvement in the regulation of cell survival since mitofilin down-regulation facilitated starvation-induced apoptosis in HeLa cells. CONCLUSION: Taken together, mitofilin is a potent regulator of autophagy and it may modulate cell survival through regulation of autophagy.

SELECTION OF CITATIONS
SEARCH DETAIL
...