Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 20(1): 1106-1121, 2023 01.
Article in English | MEDLINE | ID: mdl-36650804

ABSTRACT

The transient electromagnetic inversion of detection signals mainly depends on fast inversion in the half-space state. However, the interpretation results have a certain degree of uncertainty and blindness, so the accuracy and applicability of the three-dimensional full-space inversion need to be investigated. Two different three-dimensional full-space inversions were carried out. First, the numerical characteristic parameters of the response signals were extracted. Then, the correlations between the numerical characteristic parameters and physical parameters of the water-bearing abnormal bodies were judged, and the judgment criterion of the iterative direction was proposed. Finally, the inversion methods of the iterative algorithm and the BP neural network were utilized based on the virtual example samples. The results illustrate that the proposed numerical characteristic parameters can accurately reflect the response curve of the full-space surrounding rock. The difference in the numerical characteristic parameters was used to determine the update direction and correction value. Both inversion methods have their advantages and disadvantages. A single inversion method cannot realize the three-dimensional inversion of the physical parameters of water-bearing abnormal bodies quickly, effectively and intelligently. Therefore, the benefits of different inversion methods need to be considered to comprehensively select a reasonable inversion method. The results can provide essential ideas for the subsequent interpretation of the three-dimensional spatial response signals of water-bearing abnormal bodies.


Subject(s)
Algorithms , Neural Networks, Computer , Water
2.
Materials (Basel) ; 13(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370179

ABSTRACT

The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion plays an important role in the transformation of nanograins. Ultrasonic surface impact improves the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy is approximately 7.0 MPa·m1/2.

SELECTION OF CITATIONS
SEARCH DETAIL
...