Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
Quant Imaging Med Surg ; 14(5): 3289-3301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720846

ABSTRACT

Background: The blood volume of intraparenchymal vessels is reported to be increased in smokers. However, the blood volume can be affected by many confounders besides tobacco exposure. This study aimed to investigate the association between cigarette smoking and pulmonary blood volume after adjusting the related factors in a large cohort of Chinese males. Methods: In this retrospective study, male participants admitted to the First Affiliated Hospital of Xi'an Jiaotong University for annual health assessment between February 2017 and February 2018 were enrolled. All subjects underwent non-contrast chest computed tomography (CT) scans, and 152 subjects underwent a review CT scan 2-3 years later. A three-dimensional approach was employed to segment the lung and intrapulmonary vessels and quantitative CT (QCT) measurements, including lung volume (LV), intrapulmonary vessel volume (IPVV), low-attenuation area <-950 Hounsfield unit (LAA-950 and LAA-950%), and mean lung density (MLD). Linear regression was used to estimate the association between IPVV and the smoking index (SI). A paired t-test was used to compare the QCT parameters between the initial and follow-up CT scans. Results: A total of 656 male participants were enrolled and classified into three subgroups: non-smokers (n=311), current smokers (n=267), and former smokers (n=78). The IPVV of current smokers (134.62±23.96 vs. 120.76±25.52 mL) and former smokers (130.79±25.13 vs. 120.76±25.52 mL) were significantly larger than that of non-smokers (P<0.05). A higher SI was associated with greater IPVV [non-standardized coefficient: 0.167, 95% confidence interval (CI): 0.086-0.248]. For current smokers, the IPVV of the follow-up scan significantly increased compared to its baseline scan (135.49±28.60 vs. 129.73±29.75 mL, t=-2.326, P=0.02), but for the non-smokers and former smokers, the IPVV of the follow-up scan did not increase or decrease compared to the baseline scan (P>0.05). Conclusions: Pulmonary vascular volumes detectable on non-contrast CT are associated with cigarette exposure, and smoking cessation may prevent pulmonary vasculature remodeling.

2.
Virulence ; 15(1): 2352476, 2024 12.
Article in English | MEDLINE | ID: mdl-38741276

ABSTRACT

Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Glycation End Products, Advanced , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Biofilms/growth & development , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Glycation End Products, Advanced/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Sigma Factor/genetics , Sigma Factor/metabolism , Humans
3.
PLoS One ; 19(5): e0303513, 2024.
Article in English | MEDLINE | ID: mdl-38743748

ABSTRACT

OBJECTIVE: Although several acupuncture and moxibustion therapies have been tested in managing breast cancer-related lymphedema (BCRL), there is little consensus regarding the best options for treating this condition. This systematic review and network meta-analysis compared the efficacy of various acupuncture and/or moxibustion therapies for BCRL. METHODS: Seven databases and two clinical registration centers were searched from their inception to December 1st, 2023. The Cochrane Collaboration risk-of-bias assessment tool evaluated the quality of included RCTs. A pairwise meta-analysis was performed in STATA 16.0, while a network meta-analysis was performed in R 4.2.2. RESULTS: 18 studies were included in this analysis. Our results showed that acupuncture and moxibustion methods had great advantages in improving BCRL of patients with breast cancer. In particular, needle-warming moxibustion (NWM) could be the optimal acupuncture and moxibustion method for improving clinical effectiveness and reducing the degree of swelling of affected limbs. CONCLUSION: Our findings suggest that NWM has great potential in treating BCRL. It may reduce arm circumference, lower swelling levels, and improve clinical effectiveness. Nevertheless, more multi-center, high-quality, and large sample RCTs will be needed in the future.


Subject(s)
Acupuncture Therapy , Breast Cancer Lymphedema , Moxibustion , Humans , Moxibustion/methods , Moxibustion/adverse effects , Female , Acupuncture Therapy/methods , Acupuncture Therapy/adverse effects , Breast Cancer Lymphedema/therapy , Network Meta-Analysis , Treatment Outcome , Breast Neoplasms/complications , Breast Neoplasms/therapy
4.
Nat Commun ; 15(1): 3254, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627395

ABSTRACT

The past century has witnessed a large number of reports on the Z/E isomerization of alkenes. However, the vast majority of them are still limited to the isomerization of di- and tri-substituted alkenes. The stereospecific Z/E isomerization of tetrasubstituted alkenes remains to be an underdeveloped area, thus lacking in a stereodivergent synthesis of axially chiral alkenes. Herein we report the atroposelective synthesis of tetrasubstituted alkene analogues by asymmetric allylic substitution-isomerization, followed by their Z/E isomerization via triplet energy transfer photocatalysis. In this regard, the stereodivergent synthesis of axially chiral N-vinylquinolinones is achieved efficiently. Mechanistic studies indicate that the benzylic radical generation and distribution are two key factors for preserving the enantioselectivities of axially chiral compounds.

5.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Subject(s)
Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
6.
Chem Biol Drug Des ; 103(4): e14529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38670598

ABSTRACT

With the increasing aging population, rational design of drugs for Alzheimer's disease (AD) treatment has become an important research area. Based on the multifunctional design strategy, four diosmetin derivatives (1-4) were designed, synthesized, and characterized by 1H NMR, 13C NMR, and MS. Docking study was firstly applied to substantiate the design strategies and then the biological activities including cholinesterase inhibition, metal chelation, antioxidation and ß-amyloid (Aß) aggregation inhibition in vitro were evaluated. The results showed that 1-4 had good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, metal chelation (selective chelation of Cu2+ ions), antioxidation, self-induced, Cu2+-induced, and AChE-induced Aß aggregation inhibition activities, and suitable blood-brain barrier (BBB) permeability. Especially, compound 3 had the strongest inhibitory effect on AChE (10-8 M magnitude) and BuChE (10-7 M magnitude) and showed the best inhibition on AChE-induced Aß aggregation with 66.14% inhibition ratio. Furthermore, compound 3 could also reduce intracellular reactive oxygen species (ROS) levels in Caenorhabditis elegans and had lower cytotoxicity. In summary, 3 might be considered as a potential multifunctional anti-AD ligand.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Butyrylcholinesterase , Caenorhabditis elegans , Cholinesterase Inhibitors , Drug Design , Flavonoids , Molecular Docking Simulation , Reactive Oxygen Species , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Ligands , Blood-Brain Barrier/metabolism , Humans , Reactive Oxygen Species/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Structure-Activity Relationship , Protein Aggregates/drug effects
7.
Magn Reson Imaging ; 109: 203-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513788

ABSTRACT

PURPOSE: To determine the usefulness of multiparametric magnetic resonance (MR) quantitative imaging in characterizing the kidneys in systemic sclerosis (SSc) patients. MATERIAL AND METHODS: Forty-six SSc patients (47.9 ± 12.8 years, 40 females) and 22 age- and sex- matched healthy volunteers (46.1 ± 13.8 years, 20 females) were recruited and underwent renal MR imaging by acquiring blood oxygen level dependent and saturated multi-delay renal arterial spin labeling (SAMURAI) sequences. The T2* value, T1 value, renal blood flow (RBF), arterial bolus arrival time (aBAT), and tissue bolus arrival time (tBAT) of renal cortex were measured and compared among diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc) groups and healthy controls using One-way ANOVA and analyzed by logistic regression. RESULTS: Compared to healthy volunteers, SSc patients with normal estimated glomerular filtration rate (n = 40) had significantly lower T2* value (P = 0.026) in the left renal cortex, longer T1 value (right: P = 0.015; left: P = 0.023), lower RBF (right: P < 0.001; left: P < 0.001), and shorter tBAT (right: P < 0.001; left: P = 0.005) in both right and left renal cortex after adjusting for demographics. The dcSSc patients (n = 23) had significantly lower RBF in both right (226.7 ± 65.2 mL/100 g/min vs. 278.2 ± 73.5 mL/100 g/min, P = 0.022) and left (194.5 ± 71.5 mL/100 g/min vs. 252.7 ± 84.4 mL/100 g/min, P = 0.020) renal cortex compared to the lcSSc patients (n = 23) after adjusting for demographics, but the significance of the difference was attenuated after further adjusting for modified Rodnan skin score and digital ulcers. CONCLUSION: Multi-parametric MR quantitative imaging, particularly multi-delay ASL perfusion imaging, is a useful technique for characterizing the kidneys and classification of SSc patients.


Subject(s)
Scleroderma, Systemic , Skin Ulcer , Female , Humans , Scleroderma, Systemic/diagnostic imaging , Kidney/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
8.
J Cell Mol Med ; 28(6): e18223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451046

ABSTRACT

Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Reishi , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Spores, Fungal , Autophagy , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167060, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354757

ABSTRACT

Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Humans , Exenatide/pharmacology , Exenatide/metabolism , AMP-Activated Protein Kinases/metabolism , Glucagon-Like Peptide-1 Receptor Agonists , Diabetic Nephropathies/pathology , Lipid Metabolism , Fatty Acids , Lipids
10.
Biochem Pharmacol ; 222: 116076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387308

ABSTRACT

Diabetic kidney disease (DKD) is responsible for nearly half of all end-stage kidney disease and kidney failure is a major driver of mortality among patients with diabetes. To date, few safe and effective drugs are available to reverse the decline of kidney function. Kidney tubules producing energy by fatty acid metabolism are pivotal in development and deterioration of DKD. Peroxisome proliferator-activated receptors (PPARs), comprising PPARα, PPARδ and PPARγ play a senior role in the pathogenesis of DKD for their functions in glycemic control and lipid metabolism; whereas systemic activation of PPARγ causes serious side-effects in clinical settings. Compound H11 was a potent PPARα and PPARδ (PPARα/δ) dual agonist with potent and well-balanced PPARα/δ agonistic activity and a high selectivity over PPARγ. In this study, the potential therapeutic effects of compound H11 were determined in a db/db mouse model of diabetes. Expressions of PPARα and PPARδ in nuclei of tubules were markedly reduced in diabetes. Transcriptional changes of tubular cells showed that H11 was an effective PPARα/δ dual agonist taking effects both in vivo and in vitro. Systemic administration of H11 showed glucose tolerance and lipid metabolic benefits in db/db mice. Moreover, H11 treatment exerted protective effects on diabetic kidney injury. In addition to fatty acid metabolism, H11 also regulated diabetes-induced metabolic alternations of branch chain amino acid degradation and glycolysis. The present study demonstrated a crucial role of H11 in regulation of energy homeostasis and metabolism in glucose-treated tubular cells. Overall, compound H11 holds therapeutic promise for DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Metabolic Diseases , PPAR delta , Animals , Humans , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/drug therapy , Epithelial Cells/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Kidney/metabolism , PPAR alpha/metabolism , PPAR gamma/metabolism
11.
Onco Targets Ther ; 17: 131-144, 2024.
Article in English | MEDLINE | ID: mdl-38405176

ABSTRACT

Objective: This work aimed to explore the prognostic risk factors of lung cancer (LC) patients and establish a line chart prediction model. Methods: A total of 322 LC patients were taken as the study subjects. They were randomly divided into a training set (n = 202) and a validation set (n = 120). Basic information and laboratory indicators were collected, and the progression-free survival (PFS) and overall survival (OS) were followed up. Single-factor and cyclooxygenase (COX) multivariate analyses were performed on the training set to construct a Nomogram prediction model, which was validated with 120 patients in the validation set, and Harrell's consistency was analyzed. Results: Single-factor analysis revealed significant differences in PFS (P<0.05) between genders, body mass index (BMI), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), squamous cell carcinoma antigen (SCCA), treatment methods, treatment response evaluation, smoking status, presence of pericardial effusion, and programmed death ligand 1 (PD-L1) at 0 and 1-50%. Significant differences in OS (P<0.05) were observed for age, tumor location, treatment methods, White blood cells (WBC), uric acid (UA), CA125, pro-gastrin-releasing peptide (ProGRP), SCCA, cytokeratin fragment 21 (CYFRA21), and smoking status. COX analysis identified male gender, progressive disease (PD) as treatment response, and SCCA > 1.6 as risk factors for LC PFS. The consistency indices of the line chart models for predicting PFS and OS were 0.782 and 0.772, respectively. Conclusion: Male gender, treatment response of PD, and SCCA > 1.6 are independent risk factors affecting the survival of LC patients. The PFS line chart model demonstrates good concordance.

12.
Nat Commun ; 15(1): 145, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168080

ABSTRACT

The Hippo pathway controls developmental, homeostatic and regenerative tissue growth, and is frequently dysregulated in various diseases. Although this pathway can be activated by innate immune/inflammatory stimuli, the underlying mechanism is not fully understood. Here, we identify a conserved signaling cascade that leads to Hippo pathway activation by innate immune/inflammatory signals. We show that Tak1, a key kinase in innate immune/inflammatory signaling, activates the Hippo pathway by inducing the lysosomal degradation of Cka, an essential subunit of the STRIPAK PP2A complex that suppresses Hippo signaling. Suppression of STRIPAK results in the activation of Hippo pathway through Tao-Hpo signaling. We further show that Tak1-mediated Hippo signaling is involved in processes ranging from cell death to phagocytosis and innate immune memory. Our findings thus reveal a molecular connection between innate immune/inflammatory signaling and the evolutionally conserved Hippo pathway, thus contributing to our understanding of infectious, inflammatory and malignant diseases.


Subject(s)
Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Immunity, Innate
13.
Asia Pac J Clin Oncol ; 20(2): 143-151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36658686

ABSTRACT

Observational studies on the association between citrus fruit intake and risk of renal cell carcinoma (RCC) have reported inconsistent results. We quantitatively assessed this association by conducting a meta-analysis. PubMed and Embase databases search was conducted including relevant studies published up to January, 2020. We included epidemiological studies that reported relative risks (RRs) or odds ratios (ORs) with 95% confidence intervals (CIs) for the association between citrus fruit intake and RCC risk. A total of eight epidemiological studies consisting of five cohort and three case-control studies were included. The overall analysis showed a significantly reduced risk of RCC for high intake of citrus fruit (OR = 0.84, 95% CI 0.73-0.95). No heterogeneity was detected among the included studies (p = 0.497 for heterogeneity; I2 = 0). There was no significant publication bias by Begg's test (p = 0.266) or Egger's test (P = 0.578). A statistically significant association between citrus fruit intake and RCC was observed in case-control studies (OR = 0.84, 95% CI 0.71-0.98), while no association was observed in cohort studies (OR = 0.84, 95% CI 0.64-1.05). In addition, the dose-response analysis indicated that the RCC risk reduced by 13% (95%CI 1.0%-27%, p = 0.04 for heterogeneity) for each 100 grams per day increment of citrus fruit intake. In summary, our findings suggest an inverse association between citrus fruit intake and RCC incidence.


Subject(s)
Carcinoma, Renal Cell , Citrus , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/epidemiology , Incidence , Cohort Studies , Kidney Neoplasms/epidemiology , Kidney Neoplasms/prevention & control , Risk Factors , Fruit
14.
Eur J Radiol ; 170: 111208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988960

ABSTRACT

PURPOSE: This study aimed to investigate the associations of atherosclerotic plaque characteristics in intracranial and extracranial carotid arteries with severity of white matter hyperintensities (WMHs) in symptomatic patients using magnetic resonance (MR) imaging. METHOD: Patients with cerebrovascular symptoms and carotid plaque were recruited from the cross-sectional, multicenter study of CARE-II. Luminal stenosis of intracranial and extracranial carotid arteries, carotid plaque compositional features, and WMHs were evaluated by brain structural and vascular MR imaging. The atherosclerotic plaque characteristics in intracranial and extracranial carotid arteries were compared between patients with and without moderate-to-severe WMHs (Fazekas score > 2), and their associations with severity of WMHs were analyzed using logistic regression. RESULTS: Of the recruited 622 patients (mean age, 58.7 ± 10.9 years; 422 males), 221 (35.5 %) had moderate-to-severe WMHs with higher prevalence of moderate-to-severe luminal stenosis (17.0 % vs. 10.4 %), intraplaque hemorrhage (15.7 % vs. 9.0 %), thin/ruptured fibrous cap (30.2 % vs. 20.4 %), calcification (44.4 % vs. 22.2 %) and lipid-rich necrotic core (63.8 % vs. 51.1 %) in carotid artery compared to those without (all P < 0.05). Multivariate logistic regression showed that carotid calcification (OR, 1.854; 95 % CI, 1.187-2.898; P = 0.007) was independently associated with moderate-to-severe WMHs after adjusting for confounding factors. No significant association was found between intracranial atherosclerotic stenosis and moderate-to-severe WMHs (P > 0.05). CONCLUSION: Carotid atherosclerotic plaque features, particularly presence of calcification, were independently associated with severity of WMHs, but such association was not found in intracranial atherosclerotic stenosis, suggesting that carotid atherosclerotic plaque characteristics may have closer association with severity of WMHs compared to intracranial atherosclerosis.


Subject(s)
Carotid Stenosis , Intracranial Arteriosclerosis , Plaque, Atherosclerotic , White Matter , Male , Humans , Middle Aged , Aged , Plaque, Atherosclerotic/diagnostic imaging , Constriction, Pathologic/pathology , Carotid Stenosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Risk Factors , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Magnetic Resonance Imaging/methods , Intracranial Arteriosclerosis/pathology
15.
Quant Imaging Med Surg ; 13(12): 7695-7705, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106263

ABSTRACT

Background: Magnetic resonance imaging (MRI) has the potential in assessing the inflammation of perivascular adipose tissue (PVAT) due to its excellent soft tissue contrast. However, evidence is lacking for the association between carotid PVAT measured by MRI and carotid vulnerable atherosclerotic plaques. This study aimed to investigate the association between signal intensity of PVAT and vulnerable plaques in carotid arteries using multi-contrast magnetic resonance (MR) vessel wall imaging. Methods: In this cross-sectional study, a total of 104 patients (mean age, 64.9±7.0 years; 86 men) with unilateral moderate-to-severe atherosclerotic stenosis referred to carotid endarterectomy (CEA) were recruited from April 2018 to December 2020 at Department of Neurosurgery of Peking University Third Hospital. All patients underwent multi-contrast MR vessel wall imaging including time-of-flight (ToF) MR angiography, black-blood T1-weighted (T1w) and T2-weighted (T2w) and simultaneous non-contrast angiography and intraplaque hemorrhage (IPH) imaging sequences. Patients with contraindications to endarterectomy or MRI examinations were excluded. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of PVAT were measured on ToF images and vulnerable plaque characteristics including IPH, large lipid-rich necrotic core (LRNC), and fibrous cap rupture (FCR) were identified. The SNR and CNR of PVAT were compared between slices with and without vulnerable plaque features using Mann-Whitney U test and their associations were analyzed using the generalized linear mixed model (GLMM). Results: Carotid artery slices with IPH (30.93±14.56 vs. 27.34±10.02; P<0.001), FCR (30.35±13.82 vs. 27.53±10.37; P=0.006), and vulnerable plaque (29.15±12.52 vs. 27.32±10.05; P=0.016) had significantly higher value of SNR of PVAT compared to those without. After adjusting for clinical confounders, the SNR of PVAT was significantly associated with presence of IPH [odds ratio (OR) =0.627, 95% confidence interval (CI): 0.465-0.847, Puncorr=0.002, PFDR=0.016] and vulnerable plaque (OR =0.762, 95% CI: 0.629-0.924, Puncorr=0.006, PFDR=0.020). However, no significant association was found between the CNR of PVAT and presence of vulnerable plaque features (all P>0.05). Conclusions: The SNR of carotid artery PVAT measured by ToF MR angiography is independently associated with vulnerable atherosclerotic plaque features, suggesting that the signal intensity of PVAT might be an effective indicator for vulnerable plaque.

16.
Materials (Basel) ; 16(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834667

ABSTRACT

CoCrNi alloys exhibit excellent strength and ductility. In this work, the CoCrNiV multi-principal alloy with single-phase fine grained (FG) structure was prepared by rolling and heat treatment. The characteristics of deformation microstructures and mechanical properties were systematically investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results indicate that the CoCrNiV alloy successfully attains a yield strength of 1060 MPa while maintaining a uniform elongation of 24.1%. The enhanced strength originates from FG structure and severe lattice distortion induced by V addition. Meanwhile, the exceptional ductility arises from the stable strain-hardening ability facilitated by dislocations and stacking faults. The deformation mechanisms and the optimization strategies for attaining both strength and ductility are thoroughly discussed.

17.
Environ Sci Technol ; 57(45): 17338-17352, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37902991

ABSTRACT

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.


Subject(s)
Chloroflexi , Vinyl Chloride , Bacteria , Biodegradation, Environmental , Microbial Interactions
18.
Anal Chim Acta ; 1279: 341818, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827640

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is complex. So far there is no effective drug to treat the disease. The pathological changes of AD began 30 years before symptoms, so early diagnosis is considered to be important for AD treatment. Integrating diagnosis and therapy into a single regent has provided a new opportunity for AD treatment. Given that metal dyshomeostasis is thought to be one of the key factors to cause AD, a Schiff base substituted coumarin (probe 1) has been designed and synthesized as a selective metal chelator for multi-factor anti-AD in this work. The results of metal ions recognition showed that probe 1 had high selective fluorescent turn-on response to Al3+ and fluorescent turn-off response to Cu2+, due to intramolecular charge transfer (ICT) mechanism. Meanwhile, the results of both in vitro and in vivo bioactivities evaluation including metal chelation, reactive oxide species (ROS) elimination, self-/Cu2+-induced Aß aggregation showed that 1 and 1-Cu(II) complex had excellent synergistic anti-AD activities. In addition, 1 had low cytotoxicity and was predicted to cross the blood-brain barrier (BBB). Noticeably, X-ray single crystal diffraction of 1-Cu(II) provided molecular level information to explain the structure and theranostic activity relationship. To sum up, 1 may be a promising candidate for the development of AD theranostic agent.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , X-Rays , Precision Medicine , Metals , Coumarins , Copper
19.
BMC Cancer ; 23(1): 957, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814239

ABSTRACT

BACKGROUND: Prostate cancer is a disease that seriously troubles men. However, there are some inevitable limitations in interventional therapy for prostate cancer patients at present, most of which are caused by low selectivity and high toxic side effects due to unclear drug targets. In this study, we identified the target protein of Curcusone C with anti-prostate cancer potential activity and verified its target and mechanism of action. METHODS: Click chemistry-activity based proteomics profiling (CC-ABPP) method was used to find target protein of Curcusone C against prostate cancer. Competitive CC-ABPP, drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) methods were used to verifying the target protein. Moreover, potential mechanism was validated by western blot in vitro and by hematoxylin-eosin (HE) staining, detection of apoptosis in tumor tissue (TUNEL), and immunohistochemical (IHC) in vivo. RESULTS: We found that poly(rC)-binding protein 2 (PCBP2) was the target protein of Curcusone C. In addition, Curcusone C might disrupt the Bax/Bcl-2 balance in PC-3 cells by inhibiting the expression of the target protein PCBP2, thereby inducing mitochondrial damage and activation of the mitochondrial apoptosis pathway, and ultimately inducing apoptosis of prostate cancer cells. CONCLUSIONS: Curcusone C is a potential compound with anti-prostate cancer activity, and this effect occurs by targeting the PCBP2 protein, which in turn may affect the TGF/Smad signaling pathway and Bax/Bcl-2 balance. Our results laid a material and theoretical foundation for Curcusone C, to be widely used in anti-prostate cancer.


Subject(s)
Carrier Proteins , Prostatic Neoplasms , Male , Humans , bcl-2-Associated X Protein/metabolism , Proteomics , Click Chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Prostatic Neoplasms/pathology , Apoptosis , Cell Line, Tumor , RNA-Binding Proteins/metabolism
20.
Mol Divers ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737959

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease with complex pathogenesis. Despite the pathogenesis is unknown, the misfolding and accumulation of ß-amyloid (Aß) peptide play the important role in the occurrence and development of AD. Hence, multi-aspect intervention of the misfolded Aß peptides aggregation is a promising therapy for AD. In previous work, we obtained the emodin derivatives (a-d) with multifunctional anti-AD activities, including metal ions chelation, cholinesterase inhibition, and hydroxyl/superoxide anion radical elimination. In this work, we predicted the interaction of emodin derivatives (a-d) with Aß by combining molecular docking simulation and molecular dynamics simulation, and evaluated the ability to intervene with the self-, Cu2+- and AChE-induced Aß aggregation via in vitro methods. The results indicated that a-d could act as the potent multi-aspect intervention agents for Aß aggregation. In addition, a-d could effectively eliminate peroxyl radical, had virtually no neurotoxicity, and protect cells from oxidative and Aß-induced damage. The prediction results of ADMET properties showed that a-d had suitable pharmacokinetic characteristics. It suggested that a-d could act as the promising multi-targeted directed ligands (MTDLs) for AD. These results may provide meaningful information for the development of the potential MTDLs for AD which are modified from natural-origin scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...