Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 6777-6809, 2024.
Article in English | MEDLINE | ID: mdl-38983131

ABSTRACT

Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.


Subject(s)
Antineoplastic Agents , Autophagy , Chloroquine , Neoplasms , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Neoplasms/drug therapy , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use
2.
Regen Biomater ; 11: rbae065, 2024.
Article in English | MEDLINE | ID: mdl-38933085

ABSTRACT

Cancer is one of the most challenging diseases in the world. Recently, iron oxide nanoparticles (IONPs) are emerging materials with rapid development and high application value, and have shown great potential on tumor therapy due to their unique magnetic and biocompatible properties. However, some data hint us that IONPs were toxic to normal cells and vital organs. Thus, more data on biosafety evaluation is urgently needed. In this study, we compared the effects of silicon-coated IONPs (Si-IONPs) on two cell types: the tumor cells (Hela) and the normal cells (HEK293T, as 293 T for short), compared differences of protein composition, allocation and physical characteristics between these two cells. The major findings of our study pointed out that 293 T cells death occurred more significant than that of Hela cells after Si-IONPs treatment, and the rate and content of endocytosis of Si-IONPs in 293 T cells was more prominent than in Hela cells. Our results also showed Si-IONPs significant promoted the production of reactive oxygen species and disturbed pathways related to oxidative stress, iron homeostasis, apoptosis and ferroptosis in both two types of cells, however, Hela cells recovered from these disturbances more easily than 293 T. In conclusion, compared with Hela cells, IONPs are more likely to induce 293 T cells death and Hela cells have their own unique mechanisms to defense invaders, reminding scientists that future in vivo and in vitro studies of nanoparticles need to be cautious, and more safety data are needed for further clinical treatment.

3.
MedComm (2020) ; 5(6): e566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868327

ABSTRACT

Aging is a process that represents the accumulation of changes in organism overtime. In biological level, accumulations of molecular and cellular damage in aging lead to an increasing risk of diseases like sarcopenia. Sarcopenia reduces mobility, leads to fall-related injuries, and diminishes life quality. Thus, it is meaningful to find out novel therapeutic strategies for sarcopenia intervention that may help the elderly maintain their functional ability. Oxidative damage-induced dysfunctional mitochondria are considered as a culprit of muscle wasting during aging. Herein, we aimed to demonstrate whether myricanol (MY) protects aged mice against muscle wasting through alleviating oxidative damage in mitochondria and identify the direct protein target and its underlying mechanism. We discovered that MY protects aged mice against the loss of muscle mass and strength through scavenging reactive oxygen species accumulation to rebuild the redox homeostasis. Taking advantage of biophysical assays, peroxiredoxin 5 was discovered and validated as the direct target of MY. Through activating peroxiredoxin 5, MY reduced reactive oxygen species accumulation and damaged mitochondrial DNA in C2C12 myotubes. Our findings provide an insight for therapy against sarcopenia through alleviating oxidative damage-induced dysfunctional mitochondria by targeting peroxiredoxin 5, which may contribute an insight for healthy aging.

4.
Imeta ; 3(2): e176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882489

ABSTRACT

Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.

5.
Phytomedicine ; 129: 155657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692076

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Subject(s)
Lung Neoplasms , Pentose Phosphate Pathway , Xanthones , Xanthones/pharmacology , Animals , Pentose Phosphate Pathway/drug effects , Lung Neoplasms/drug therapy , Mice , Humans , Phosphogluconate Dehydrogenase/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Disease Models, Animal
6.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401519

ABSTRACT

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycyrrhetinic Acid , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Glycyrrhetinic Acid/pharmacology , Lung Neoplasms/pathology , Caspase 3 , Peroxiredoxin VI/therapeutic use , Cell Line, Tumor , Apoptosis
7.
Mater Horiz ; 11(6): 1414-1425, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38363093

ABSTRACT

Taking advantage of a hybrid generator to simultaneously collect polynary energy from a single energy source provides a feasible solution for the energy dilemma in the new era. Herein, we integrate a triboelectric nanogenerator and a thermoelectric generator for polynary energy harvesting and self-powered sensing of heatwaves in large-scale industrial factory buildings, which contains both thermal energy and wind energy. The new design of the fan-shaped rotation triboelectric nanogenerator (FR-TENG) makes it more compact and easily integrated. After structure modeling, the energy conversion efficiency of the FR-TENG can reach a maximum of 37.2%, which can successfully power a Bluetooth hygrothermograph transmitting environmental information wirelessly every 30 s at a wind speed of 4.67 m s-1. An all-inorganic flexible thermoelectric generator (iThEG) is developed based on copper and constantan with an output power density of 0.73 W m-3, and maintains its original mechanical properties after 10 000 bending tests. Moreover, a self-powered hot wind sensing system based on Labview is established which can display wind-speed and wind-temperature in real time. The working concept presented here is also applicable to other single energy sources containing multiple energy forms, such as falling raindrops and sunlight, which can lift energy utilization and conversion efficiency and alleviate the energy crisis.

8.
Int J Nanomedicine ; 19: 1385-1408, 2024.
Article in English | MEDLINE | ID: mdl-38371457

ABSTRACT

Background: Acute kidney injury (AKI) is a syndrome, posing a substantial healthcare burden. The pathological basis of AKI is associated with inflammation and oxidative stress which cause additional damage to mitochondria. Artesunate (ATS) is a derivative of artemisinin isolated from Artemisia annua L. that is an effective treatment for malaria and favored for the prevention and treatment of kidney diseases. However, there are still challenges related to its efficacy, including poor water solubility, limited oral bioavailability and short half-life. Liposome-based nanoparticles are used for drug delivery due to their ideal biocompatibility and their ability to improve the bioavailability of specific drugs and enhance drug efficacy. Methods: In this study, a novel TPP-based natural ATS-nanoliposome, namely T-A-Ls, was applied for the treatment of AKI. ATS was encapsulated with or without triphenylphosphonium (TPP)-modified nanoliposomes. AKI was induced by cisplatin in C57BL/6J mice and a cisplatin-induced injury model was generated in HK-2 cells in vitro. Blood urea nitrogen (BUN), serum creatinine (Scr) measurements and section staining were utilized to assess renal protective effect of T-A-Ls. Inflammatory-related factors and proteins were quantified via Elisa, Immunofluorescence and Western Blot (WB). The anti-mitochondrial oxidative stress effect of T-A-Ls was determined by ROS, JC-1 and oxygen consumption rate (OCR) kits. Immunohistochemistry and WB were conducted to measure associated protein expressions. In vivo biodistribution and the concentration of T-A-Ls in kidney were also explored. Results: T-A-Ls exhibited good oxidative resistance, preferential renal uptake, mitochondrial targeting, and it ameliorated kidney injury in cisplatin-induced AKI mice. Mitochondrial dysfunction, ATP production and respiratory capacity were improved in damaged HK-2 cells; ROS content decreased while mitochondrial membrane potential recovered. T-A-Ls exerted renal protection by inhibiting inflammation and reducing oxidative stress; these effects were mediated by a downregulation in the expression of RAGE and iNOS and an upregulation in both Nrf2 and HO-1. Conclusion: T-A-Ls could improve the delivery of ATS to the kidney, offering a promising avenue to treat AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Organophosphorus Compounds , Animals , Mice , Cisplatin/toxicity , Artesunate , Reactive Oxygen Species/metabolism , Tissue Distribution , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Kidney , Oxidative Stress , Mitochondria/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Drug Delivery Systems/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL