Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Imaging Behav ; 15(2): 772-781, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32712796

ABSTRACT

Glycosylated hemoglobin A1c (HbA1c) has been considered as a key contributor to impaired cognition in type 2 diabetes mellitus (T2DM) brains. However, how does it affect the brain and whether the glucose controlling can slow down the process are still unknown. In the current study, T2DM patients with high glycosylated hemoglobin level (HGL) and controls with normal glycosylated hemoglobin level (NGL) were enrolled to investigate the relationships between HbA1c, brain imaging characteristics and cognitive function. First, a series of cognitive tests including California Verbal Learning Test (CVLT) were conducted. Then, the functional irregularity based on resting state functional magnetic resonance imaging data was evaluated via a new data-driven brain entropy (BEN) mapping analysis method. We found that the HGLs exhibited significantly increased BEN in the right precentral gyrus (PreCG.R), the right middle frontal gyrus (MFG.R), the triangular and opercular parts of the right inferior frontal gyrus (IFGtriang.R and IFGoperc.R). The strengths of the functional connections of PreCG.R with the brainstem/cerebellum were decreased. Partial correlation analysis showed that HbA1c had a strong positive correlation to regional BEN and negatively correlated with some CVLT scores. Negative correlations also existed between the BEN of PreCG.R/IFGoperc.R and some CVLT scores, suggesting the correspondence between higher HbA1c, increased BEN and decreased verbal memory function. This study demonstrated the potential of BEN in exploring the functional alterations affected by HbA1c and interpreting the verbal memory function decline. It will help understanding the neurophysiological mechanism of T2DM-induced cognitive decline and taking effective prevention or treatment measures.


Subject(s)
Diabetes Mellitus, Type 2 , Brain/diagnostic imaging , Brain/metabolism , Brain Mapping , Glycated Hemoglobin/metabolism , Humans , Magnetic Resonance Imaging
2.
Neurosci Bull ; 36(11): 1344-1354, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32809188

ABSTRACT

Previous studies have shown that CCL2 (C-C motif chemokine ligand 2) induces chronic pain, but the exact mechanisms are still unknown. Here, we established models to explore the potential mechanisms. Behavioral experiments revealed that an antagonist of extracellular signal-regulated kinase (ERK) inhibited not only CCL2-induced inflammatory pain, but also pain responses induced by complete Freund's adjuvant. We posed the question of the intracellular signaling cascade involved. Subsequent experiments showed that CCL2 up-regulated the expression of phosphorylated ERK (pERK) and N-methyl D-aspartate receptor [NMDAR] subtype 2B (GluN2B); meanwhile, antagonists of CCR2 and ERK effectively reversed these phenomena. Whole-cell patch-clamp recordings revealed that CCL2 enhanced the NMDAR-induced currents via activating the pERK pathway, which was blocked by antagonists of GluN2B and ERK. In summary, we demonstrate that CCL2 directly interacts with CCR2 to enhance NMDAR-induced currents, eventually leading to inflammatory pain mainly through the CCL2-CCR2-pERK-GluN2B pathway.


Subject(s)
Chemokine CCL2/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , N-Methylaspartate , Pain , Receptors, N-Methyl-D-Aspartate/metabolism , Substantia Gelatinosa/physiology , Animals , Chemokine CCL2/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , N-Methylaspartate/metabolism , Neurons , Signal Transduction
3.
BMC Neurol ; 20(1): 48, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033580

ABSTRACT

BACKGROUND: The medical imaging to differentiate World Health Organization (WHO) grade II (ODG2) from III (ODG3) oligodendrogliomas still remains a challenge. We investigated whether combination of machine leaning with radiomics from conventional T1 contrast-enhanced (T1 CE) and fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) offered superior efficacy. METHODS: Thirty-six patients with histologically confirmed ODGs underwent T1 CE and 33 of them underwent FLAIR MR examination before any intervention from January 2015 to July 2017 were retrospectively recruited in the current study. The volume of interest (VOI) covering the whole tumor enhancement were manually drawn on the T1 CE and FLAIR slice by slice using ITK-SNAP and a total of 1072 features were extracted from the VOI using 3-D slicer software. Random forest (RF) algorithm was applied to differentiate ODG2 from ODG3 and the efficacy was tested with 5-fold cross validation. The diagnostic efficacy of radiomics-based machine learning and radiologist's assessment were also compared. RESULTS: Nineteen ODG2 and 17 ODG3 were included in this study and ODG3 tended to present with prominent necrosis and nodular/ring-like enhancement (P < 0.05). The AUC, ACC, sensitivity, and specificity of radiomics were 0.798, 0.735, 0.672, 0.789 for T1 CE, 0.774, 0.689, 0.700, 0.683 for FLAIR, as well as 0.861, 0.781, 0.778, 0.783 for the combination, respectively. The AUCs of radiologists 1, 2 and 3 were 0.700, 0.687, and 0.714, respectively. The efficacy of machine learning based on radiomics was superior to the radiologists' assessment. CONCLUSIONS: Machine-learning based on radiomics of T1 CE and FLAIR offered superior efficacy to that of radiologists in differentiating ODG2 from ODG3.


Subject(s)
Machine Learning , Magnetic Resonance Imaging/methods , Oligodendroglioma/pathology , Adolescent , Adult , Aged , Algorithms , Child , Female , Humans , Male , Middle Aged , Radiologists , Retrospective Studies , Sensitivity and Specificity , World Health Organization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...