Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 658: 124205, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734278

ABSTRACT

The current wound healing process faces numerous challenges such as bacterial infection, inflammation and oxidative stress. However, wound dressings used to promote wound healing, are not well suited to meet the clinical needs. Hyaluronic acid (HA) not only has excellent water absorption and good biocompatibility but facilitates cell function and tissue regeneration. Dopamine, on the other hand, increases the overall viscosity of the hydrogel and possesses antioxidant property. Furthermore, chitosan exhibits outstanding performance in antimicrobial, anti-inflammatory and antioxidant activities. Basic fibroblast growth factor (bFGF) is conducive to cell proliferation and migration, vascular regeneration and wound healing. Hence, we designed an all-in-one hydrogel patch containing dopamine and chitosan framed by hyaluronic acid (HDC) with sprayed gelatin methacryloyl (GelMA) microspheres loaded with bFGF (HDC-bFGF). The hydrogel patch exhibits excellent adhesive, anti-inflammatory, antioxidant and antibacterial properties. In vitro experiments, the HDC-bFGF hydrogel patch not only showed significant inhibitory effect on RAW cell inflammation and Staphylococcus aureus (S. aureus) growth but also effectively scavenged free radicals, in addition to promoting the migration of 3 T3 cells. In the mice acute infected wound model, the HDC-bFGF hydrogel patch adhered to the wound surface greatly accelerated the healing process via its anti-inflammatory and antioxidant activities, bacterial inhibition and pro-vascularization effects. Therefore, the multifunctional HDC-bFGF hydrogel patch holds great promise for clinical application.

2.
Talanta ; 274: 125987, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552478

ABSTRACT

Multidrug resistance (MDR) is a dominant challenge in cancer chemotherapy failure. The over-expression of breast cancer resistance protein (BCRP) in tumorous cells, along with its extensive substrate profile, is a leading cause of tumor MDR. Herein, on the basis of styrene maleic acid (SMA) polymer membrane protein stabilization strategy and surface plasmon resonance (SPR) biosensor, a novel high-throughput screening (HTS) system for BCRP inhibitors has been established. Firstly, LLC-PK1 and LLC-PK1/BCRP cell membranes were co-incubated with SMA polymers to construct SMA lipid particles (SMALPs). PK1-SMALPs were thus immobilized in channel 1 of the L1 chip as the reference channel, and BCRP-SMALPs were immobilized in channel 2 as the detection channel to establish the BCRP-SMALPs-SPR screening system. The methodological investigation demonstrated that the screening system was highly specific and stable. Three active compounds were screened out from 26 natural products and their affinity constants with BCRP were determined. The KD of xanthotoxin, bergapten, and naringenin were 5.14 µM, 4.57 µM, and 3.72 µM, respectively. The in vitro cell verification experiments demonstrated that xanthotoxin, bergapten, and naringenin all significantly increased the sensitivity of LLC-PK1/BCRP cells to mitoxantrone with possessing reversal BCRP-mediated MDR activity. Collectively, the developed BCRP-SMALPs-SPR screening system in this study has the advantages of rapidity, efficiency, and specificity, providing a novel strategy for the in-depth screening of BCRP inhibitors with less side effects and higher efficacy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Maleates , Neoplasm Proteins , Surface Plasmon Resonance , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Surface Plasmon Resonance/methods , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasm Proteins/analysis , Humans , Maleates/chemistry , Maleates/pharmacology , Animals , High-Throughput Screening Assays/methods , Swine , Polystyrenes/chemistry , Biosensing Techniques/methods
3.
J Biomed Mater Res A ; 112(7): 988-1003, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38318924

ABSTRACT

Acute pancreatitis (AP) is a common and serious acute inflammatory disease with high severity rate and mortality. Inflammation and oxidative stress play an extremely important role in the development of AP disease. Polyvinylpyrrolidone-modified iridium nanoparticles (IrNP-PVP) have multienzyme mimetic activity, and the aim of this article is to discuss the therapeutic alleviative effects of the ultrasmall nanozymes IrNP-PVP on AP through their antioxidant and anti-inflammatory effects. IrNP-PVP were proved to inhibit inflammation and scavenge reactive oxygen species (ROS) at the cellular level. The synthetic IrNP-PVP exhibit remarkable antioxidant and anti-inflammatory activities in the prevention and treatment of AP mice by establishing murine AP model, which can reduce the oxidative stress and inflammatory response. The results of this article indicated that the ultrasmall nanozymes IrNP-PVP effectively alleviate AP via scavenging ROS as well as suppressing inflammation both in vivo and in vitro, which might provide enormous promise for the AP management.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Iridium , Pancreatitis , Povidone , Reactive Oxygen Species , Animals , Pancreatitis/drug therapy , Povidone/chemistry , Povidone/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Iridium/chemistry , Iridium/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Male , Oxidative Stress/drug effects , RAW 264.7 Cells , Acute Disease
4.
Phys Chem Chem Phys ; 26(3): 1671-1683, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38126187

ABSTRACT

To tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are being urgently explored. The FeSiCr soft magnetic alloy is one of the more widely used and well-received iron-based soft magnetic alloy materials with high permeability; however, the development of high-performance FeSiCr alloy wave-absorbing materials is still a major challenge. In this study, double core-shell-structured composites of MIL-88(Fe)@Fe2O3@FeSiCr were successfully prepared by the oxidative heat treatment of the flaky FeSiCr obtained after ball milling and then in situ composited with MIL-88(Fe). The heterogeneous interfacial composition and microstructure were regulated to balance the microwave-loss capability and impedance matching of the material, and an enhancement of the composite absorbing performance was achieved. The composite material had a reflection-loss minimization (RLmin) of -72.65 dB, corresponding to a frequency of 6.61 GHz, with an absorbing coating thickness of 2.97 mm and an effective absorbing bandwidth (RL ≤ -10 dB) of 2.38 GHz (5.42-7.80 GHz). The results of this study provide useful ideas for wave-absorbing materials by applying high permeability soft magnetic alloy micropowders.

5.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142313

ABSTRACT

A series of symmetrical truxene-centered and 3-ethylrhodanine end-capped electron acceptors with high absorption coefficient, namely Tr(Hex)6-3RD, Tr(Dec)6-3RD, and Tr(Hex)6-6RD, were prepared and constructed for non-fullerene solar cells. To satisfy solution-processability, multiple energy levels, and suitable morphology, these three acceptors were comparatively studied through alkyl chain (hexyl/decyl) and branched-arm engineering (three/six branched arms). The six-bladed propeller acceptor of Tr(Hex)6-6RD recorded the power conversion efficiency (PCE) of 1.1% blending with PTB7-Th without additional additives and post-processing. This work highly broadens the potential applications of star-shaped truxene building blocks in the fields of organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...