Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 28(6): 3501-3512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470598

ABSTRACT

Cervical abnormal cell detection plays a crucial role in the early screening of cervical cancer. In recent years, some deep learning-based methods have been proposed. However, these methods rely heavily on large amounts of annotated images, which are time-consuming and labor-intensive to acquire, thus limiting the detection performance. In this paper, we present a novel Semi-supervised Cervical Abnormal Cell detector (SCAC), which effectively utilizes the abundant unlabeled data. We utilize Transformer as the backbone of SCAC to capture long-range dependencies to mimic the diagnostic process of pathologists. In addition, in SCAC, we design a Unified Strong and Weak Augment strategy (USWA) that unifies two data augmentation pipelines, implementing consistent regularization in semi-supervised learning and enhancing the diversity of the training data. We also develop a Global Attention Feature Pyramid Network (GAFPN), which utilizes the attention mechanism to better extract multi-scale features from cervical cytology images. Notably, we have created an unlabeled cervical cytology image dataset, which can be leveraged by semi-supervised learning to enhance detection accuracy. To the best of our knowledge, this is the first publicly available large unlabeled cervical cytology image dataset. By combining this dataset with two publicly available annotated datasets, we demonstrate that SCAC outperforms other existing methods, achieving state-of-the-art performance. Additionally, comprehensive ablation studies are conducted to validate the effectiveness of USWA and GAFPN. These promising results highlight the capability of SCAC to achieve high diagnostic accuracy and extensive clinical applications.


Subject(s)
Cervix Uteri , Image Interpretation, Computer-Assisted , Supervised Machine Learning , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Female , Image Interpretation, Computer-Assisted/methods , Cervix Uteri/diagnostic imaging , Cervix Uteri/pathology , Cervix Uteri/cytology , Algorithms , Deep Learning
2.
ACS Appl Mater Interfaces ; 16(5): 6447-6461, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266393

ABSTRACT

The development of precision personalized medicine poses a significant need for the next generation of advanced diagnostic and therapeutic technologies, and one of the key challenges is the development of highly time-, space-, and dose-controllable drug delivery systems that respond to the complex physiopathology of patient populations. In response to this challenge, an increasing number of stimuli-responsive smart materials are integrated into biomaterial systems for precise targeted drug delivery. Among them, responsive microcapsules prepared by droplet microfluidics have received much attention. In this study, we present a UV-visible light cycling mediated photoswitchable microcapsule (PMC) with dynamic permeability-switching capability for precise and tailored drug release. The PMCs were fabricated using a programmable pulsed aerodynamic printing (PPAP) technique, encapsulating an aqueous core containing magnetic nanoparticles and the drug doxorubicin (DOX) within a poly(lactic-co-glycolic acid) (PLGA) composite shell modified by PEG-b-PSPA. Selective irradiation of PMCs with ultraviolet (UV) or visible light (Vis) allows for high-precision time-, space-, and dose-controlled release of the therapeutic agent. An experimentally validated theoretical model was developed to describe the drug release pattern, holding promise for future customized programmable drug release applications. The therapeutic efficacy and value of patternable cancer cell treatment activated by UV radiation is demonstrated by our experimental results. After in vitro transcatheter arterial chemoembolization (TACE), PMCs can be removed by external magnetic fields to mitigate potential side effects. Our findings demonstrate that PMCs have the potential to integrate embolization, on-demand drug delivery, magnetic actuation, and imaging properties, highlighting their immense potential for tailored drug delivery and embolic therapy.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Capsules , Microfluidics , Drug Delivery Systems/methods , Doxorubicin/pharmacology , Drug Liberation
SELECTION OF CITATIONS
SEARCH DETAIL