Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Autophagy ; 19(8): 2240-2256, 2023 08.
Article in English | MEDLINE | ID: mdl-36779633

ABSTRACT

Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.


Subject(s)
Calcineurin , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Calcineurin/metabolism , Acetaminophen , Autophagy/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Glutathione/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
J Dairy Sci ; 105(8): 6997-7010, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688731

ABSTRACT

Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood ß-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 µg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of ß-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of ß-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.


Subject(s)
Cattle Diseases , Ketosis , 3-Hydroxybutyric Acid , Acetylglucosaminidase/metabolism , Adipose Tissue/metabolism , Animals , Autophagy , Cathepsin D/metabolism , Cattle , Cattle Diseases/metabolism , Female , Glycerol/metabolism , Ketosis/veterinary , Lactation , Leupeptins/metabolism , Lipolysis , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Mammals/metabolism , Pregnancy , RNA, Messenger/metabolism , Sterol Esterase/metabolism , Triglycerides/metabolism
3.
Acta Pharm Sin B ; 12(6): 2869-2886, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35755273

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and insulin resistance and there are currently no approved drugs for its treatment. Hyperactivation of mTOR complex 1 (mTORC1) and subsequent impairment of the transcription factor EB (TFEB)-mediated autophagy-lysosomal pathway (ALP) are implicated in the development of NAFLD. Accordingly, agents that augment hepatic TFEB transcriptional activity may have therapeutic potential against NAFLD. The objective of this study was to investigate the effects of nuciferine, a major active component from lotus leaf, on NAFLD and its underlying mechanism of action. Here we show that nuciferine activated ALP and alleviated steatosis, insulin resistance in the livers of NAFLD mice and palmitic acid-challenged hepatocytes in a TFEB-dependent manner. Mechanistic investigation revealed that nuciferine interacts with the Ragulator subunit hepatitis B X-interacting protein and impairs the interaction of the Ragulator complex with Rag GTPases, thereby suppressing lysosomal localization and activity of mTORC1, which activates TFEB-mediated ALP and further ameliorates hepatic steatosis and insulin resistance. Our present results indicate that nuciferine may be a potential agent for treating NAFLD and that regulation of the mTORC1-TFEB-ALP axis could represent a novel pharmacological strategy to combat NAFLD.

4.
J Dairy Sci ; 105(7): 6030-6040, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35637003

ABSTRACT

When ketosis occurs, supraphysiological levels of free fatty acids (FFA) can cause oxidative injury to the mammary gland and autophagy can regulate the cellular oxidative status. The aim of this study was to investigate the autophagy status of mammary tissue and its associations with oxidative stress in healthy and clinically ketotic dairy cows. Mammary tissue and blood samples were collected from healthy cows [n = 15, ß-hydroxybutyrate (BHB) <0.6 mM] and clinically ketotic cows (n = 15, BHB >3.0 mM) at 3 to 15 (average = 7) days in milk. For in vitro study, bovine mammary epithelial cells (BMEC) isolated from healthy cows were treated with 0, 0.3, 0.6, or 1.2 mM FFA for 24 h. Furthermore, BMEC were pretreated with 100 nM rapamycin, an autophagy activator, for 4 h or 50 mM 3-methyladenine (3-MA), an autophagy inhibitor, for 1 h, followed by treatment with or without FFA (1.2 mM) for another 24 h. Oxidation indicators and autophagy-related protein abundance were measured. Compared with healthy cows, serum concentrations of FFA, BHB, and malondialdehyde were greater in clinically ketotic cows, but milk production (kg/d), milk protein (kg/d), activities of superoxide dismutase, catalase, and glutathione peroxidase were lower. Abundances of mRNA and protein of autophagy-related gene 5 (ATG5) and 7 (ATG7) were lower, but sequestosome-1 (SQSTM1, also called p62) greater in mammary tissue of clinically ketotic cows. The mRNA abundance of microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3) and protein abundance of LC3-II were lower in mammary tissue of clinically ketotic cows. In vitro, exogenous FFA increased the content of malondialdehyde and reactive oxygen species, but decreased the activities of superoxide dismutase, catalase, and plasma glutathione peroxidase. Compared with the 0 mM FFA group, abundance of ATG5, ATG7, LC3-II was greater, but p62 was lower in the 0.6 mM FFA-treated cells. Similarly, abundance of ATG5, ATG7, and LC3-II was lower, but p62 greater in the 1.2 mM FFA-treated cells relative to 0 mM FFA group. Culture with rapamycin alleviated oxidative stress induced by 1.2 mM FFA, whereas 3-MA aggravated it. Overall, results indicated that a low concentration (0.6 mM) of FFA can induce oxidative stress and activate autophagy in BMEC. At higher concentrations of FFA (1.2 mM), autophagy is impaired and oxidative stress is aggravated. Autophagy is a mechanism for BMEC to counteract FFA-induced stress. As such, it could serve as a potential target for further development of novel strategies against oxidative stress.


Subject(s)
Ketosis , 3-Hydroxybutyric Acid , Animals , Autophagy/genetics , Catalase/metabolism , Cattle , Fatty Acids, Nonesterified , Female , Glutathione Peroxidase/metabolism , Ketosis/veterinary , Malondialdehyde , Oxidative Stress , RNA, Messenger/metabolism , Sirolimus , Superoxide Dismutase/metabolism
5.
J Dairy Sci ; 105(5): 4520-4533, 2022 May.
Article in English | MEDLINE | ID: mdl-35248377

ABSTRACT

Ketosis occurs most frequently in the peripartal period and is associated with liver injury and steatosis. Lysosomes serve as the terminal degradative station and contribute to liver homeostasis through their role in the digestion of dysfunctional organelles and lipid droplets. Transcription factor EB (TFEB) has been identified as a master regulator of lysosomal function. Thus, the objective of the present study was to investigate the status of lysosomal function and TFEB transcriptional activity and potential changes in abundance of upstream effectors of TFEB identified in nonruminants, including mechanistic target of rapamycin kinase complex 1 (mTORC1), protein kinase B (Akt), glycogen synthase kinase ß (GSK3ß), and extracellular signal-regulated kinase1/2 (ERK1/2), and to explore which factor induces the above changes. Liver and blood samples were collected from healthy cows (n = 10) and ketotic cows (n = 10) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9 d). Calf hepatocytes were isolated from Holstein calves and treated with 10 ng/mL growth hormone (GH), 3.0 mM ß-hydroxybutyrate (BHB), 1.5 ng/mL interleukin-18 (IL-18), 0.15 ng/mL tumor necrosis factor-α (TNF-α), or 1.2 mM free fatty acid (FFA) for 12 h. Serum levels of FFA and activities of alanine aminotransferase and aspartate aminotransferase were greater in ketotic cows, whereas glucose was lower. Additionally, ketotic dairy cows exhibited higher serum concentrations of GH, IL-18, and TNF-α, and lower serum concentration of insulin. The lower protein abundance of lysosome-associated membrane protein 1 (LAMP1) and mRNA abundance of LAMP1 indicated that hepatic lysosomal mass was lower in ketotic cows. Furthermore, lower protein abundance of cathepsin D (CTSD) and mRNA abundance of CTSD and V0 domain of the vacuolar ATPase along with lower activity of ß-N-acetylglucosaminidase indicated impairment in hepatic lysosomal function due to ketosis. The lower nuclear abundance, total protein, and mRNA abundance of TFEB and peroxisome proliferator-activated receptor γ coactivator 1 α along with greater phosphorylated (p)-TFEB in the liver of ketotic cows indicated an impairment of hepatic TFEB transcriptional activity. The protein abundances of phosphorylated mTOR (p-mTOR) and its downstream effectors ribosomal protein S6 kinase B (RPS6KB) and eukaryotic factor 4E-binding protein 1 (EIF4EBP1) were greater, whereas p-Akt, p-GSK3ß, and p-ERK1/2 were lower in the liver of ketotic cows. Importantly, elevated phosphorylation of mTOR, RPS6KB, and EIF4EBP1 was observed in calf hepatocytes treated with GH, BHB, IL-18, TNF-α, and FFA. Moreover, BHB, TNF-α, and FFA, not GH and IL-18, reduced TFEB transcriptional activity and impaired lysosomal function in calf hepatocytes. Taken together, these data suggest that BHB, TNF-α, and FFA overactivate the hepatic mTORC1 signaling pathway during ketosis and further impaired TFEB transcriptional activity and lysosomal function, which may contribute to liver injury and steatosis.


Subject(s)
Ketosis , Proto-Oncogene Proteins c-akt , 3-Hydroxybutyric Acid/metabolism , Animals , Autophagy/genetics , Cattle , Fatty Acids, Nonesterified/metabolism , Female , Glycogen Synthase Kinase 3 beta/metabolism , Interleukin-18/metabolism , Ketosis/metabolism , Ketosis/veterinary , Liver/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
J Dairy Sci ; 104(11): 11973-11982, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34454753

ABSTRACT

Free fatty acids (FFA)-induced hepatic inflammation agravates liver injury and metabolic dysfunction in dairy cows with ketosis or fatty liver. Under stressful conditions, autophagy is generally considered as a cell protection mechanism, but whether the FFA-induced inflammatory and stress effect on hepatocytes involves an autophagy response is not well known. Thus, the objective of this study was to investigate the effects of FFA on autophagy and the role of autophagy in the activation of NF-κB (nuclear factor kappa B) signaling and NLRP3 (NLR family pyrin domain containing 3) inflammasome in calf hepatocytes. Calf hepatocytes were isolated from 3 healthy Holstein female new-born calves (1 d of age, 30-40 kg) and exposed to various concentrations of FFA (0, 0.3, 0.6, or 1.2 mM) after treatment with or without the autophagy inhibitor chloroquine (CQ) or the autophagy activator rapamycin. Expression of autophagy markers, LC3 (microtubule-associated protein 1 light chain 3) and p62 (sequestosome 1), NF-κB signaling, and NLRP3 inflammasome-related molecules were analyzed via western blot and quantitative real-time PCR. Results revealed that 0.6 and 1.2 mM FFA activated NF-κB signaling and NLRP3 inflammasome as indicated by an elevated ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1 (caspase 1), activity of CASP1, and mRNA abundance of IL1B and IL18. In addition, hepatocyte treated with 0.6 and 1.2 mM FFA or autophagy inhibitor CQ displayed increased protein abundance of p62 and LC3-II. Moreover, there was no difference in protein abundance of p62 and LC3-II between calf hepatocytes treated with 1.2 mM FFA and 1.2 mM FFA plus CQ, indicating that FFA inhibits autophagic activity in calf hepatocytes. Treatment with CQ led to overactivation of NF-κB signaling and NLRP3 inflammasome. Furthermore, CQ plus 1.2 mM FFA aggravated FFA-induced inflammation. In contrast, induction of autophagy by rapamycin ameliorated the FFA-activated NF-κB signaling and NLRP3 inflammasome as demonstrated by a lower ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1, activity of CASP1, and mRNA abundance of IL1B and IL18. Overall, inhibition of autophagy exacerbated, whereas induction of autophagy alleviated, FFA-induced inflammatory processes in calf hepatocytes, suggesting that impairment of autophagy might be partly responsible for hepatic inflammation and subsequent liver injury in dairy cows with ketosis or fatty liver. As such, regulation of autophagy may be an effective therapeutic strategy for controlling overt inflammatory responses in vivo.


Subject(s)
Inflammasomes , NF-kappa B , Animals , Autophagy , Cattle , Fatty Acids, Nonesterified , Female , Hepatocytes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Pregnancy , Pyrin Domain
7.
J Dairy Sci ; 104(8): 9316-9326, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34001357

ABSTRACT

Negative energy balance-induced high blood concentrations of free fatty acids during the early postpartum period in dairy cows is a major cause of liver injury. Cows in severe negative energy balance often have suboptimal intakes of feed, which contributes to shortfalls in production of ruminal propionate and circulating glucose. Although increasing propionate production by the rumen through feed additives such as propylene glycol is effective in helping cows alleviate the shortfall in dietary energy supply, mechanisms whereby propionate affects liver function beyond gluconeogenesis are unknown. Therefore, the objective of this study was to investigate whether propionate could protect calf hepatic cells from palmitic acid (PA)-induced lipotoxicity and the underlying mechanisms. Calf hepatic cells were isolated from 5 healthy calves (1 d old, female, 30-40 kg, fasting) and treated with various concentrations of PA (0, 100, 200, or 400 µM) and propionate (0, 1, 2, or 4 mM) after being administered with or without autophagic inhibitor. Propionate enhanced autophagic activity in calf hepatic cells, as indicated by elevated expression of autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II, encoded by MAP1LC3) and decreased expression of SQSTM1 (sequestosome-1, also called p62). Conversely, PA suppressed autophagic activity and decreased cell viability, which was improved by propionate in calf hepatic cells. In addition, propionate decreased the phosphorylation of proteins EIF2AK3 (kinase R/PKR like ER kinase) and ERN1 (inositol-requiring enzyme 1α) and cleaved ATF6 (activating transcription factor 6) in PA-treated calf hepatic cells, indicating the suppression effect of propionate on endoplasmic reticulum (ER) stress. However, inhibition of autophagic activity by chloroquine or bafilomycin A1 impede the beneficial effects of propionate on ER stress and cell viability. These results demonstrated that propionate alleviates ER stress and elevates cell viability in PA-treated calf hepatic cells by enhancing autophagy, which implies that autophagy may be a promising target in improving liver injury of dairy cows during transition period.


Subject(s)
Endoplasmic Reticulum Stress , Palmitic Acid , Animals , Autophagy , Cattle , Female , Hepatocytes , Propionates
8.
J Dairy Sci ; 104(5): 6134-6145, 2021 May.
Article in English | MEDLINE | ID: mdl-33685683

ABSTRACT

Dairy cows with ketosis exhibit signs of pronounced adipose tissue lipolysis and systemic inflammation, both of which exacerbate this metabolic disorder. In nonruminants, CIDEC plays a pivotal role in the formation of large unilocular lipid droplets. The present study aimed to ascertain the role of CIDEC in the lipolytic and inflammatory response of white adipose tissue (WAT) in vivo and in vitro. Subcutaneous adipose tissue and blood samples were collected from 15 healthy cows (blood ß-hydroxybutyrate concentration < 1.2 mM) and 15 cows with clinical ketosis (blood ß-hydroxybutyrate concentration > 3.0 mM) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were used for in vitro studies. Isolated adipocytes were treated with 0, 0.1, 1, or 10 ng/mL TNF-α for 3 h, transfected with CIDEC small interfering RNA for 48 h, or transfected with CIDEC overexpression adenovirus for 48 h followed by treatment with TNF-α (0.1 ng/mL) for 3 h. Serum concentrations of fatty acids were greater, and dry matter intake, milk yield, and serum glucose concentrations lower in cows with clinical ketosis. Protein and mRNA abundance of CIDEC were lesser in subcutaneous WAT of clinically ketotic versus healthy cows. Furthermore, the ratio of phosphorylated hormone sensitive lipase (p-LIPE) to LIPE, phosphorylated RELA (p-RELA) to RELA, and protein abundance of PNPLA2 and phosphorylated inhibitor of κBα (p-NFKBIA) were greater in dairy cows with clinical ketosis. The mRNA abundance of proinflammatory cytokines TNFA and IL1B were greater, and the anti-inflammatory cytokine IL10 was lower in WAT of dairy cows with clinical ketosis. In calf adipocytes, exogenous TNF-α (0.1, 1, or 10 ng/mL) decreased protein and mRNA abundance of CIDEC. In addition, exogenous TNF-α or knockdown of CIDEC reduced the secretion of the anti-inflammatory cytokine IL-10, but increased the ratio of p-LIPE to LIPE, p-RELA to RELA, protein abundance of PNPLA2 and p-NFKBIA, glycerol content, and the secretion of IL-1ß in calf adipocytes. Overexpression of CIDEC in TNFα-treated adipocytes attenuated lipolysis and activation of the NF-κB signaling pathway. Overall, these data suggest that inhibition of lipid droplet-associated protein CIDEC by TNF-α contributes to the pronounced lipolysis and inflammation of calf adipocytes, and CIDEC is a relevant target in clinically ketotic cows.


Subject(s)
Lipolysis , Tumor Necrosis Factor-alpha , Adipocytes , Animals , Cattle , Cell Death , DNA Fragmentation , Female , Inflammation/veterinary
9.
J Dairy Sci ; 104(4): 4847-4857, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33551163

ABSTRACT

Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood ß-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.


Subject(s)
Cattle Diseases , Ketosis , 3-Hydroxybutyric Acid , Animals , Autophagy , Cattle , Female , Ketosis/veterinary , Lactation , Liver , Mitophagy
10.
Br J Pharmacol ; 177(15): 3591-3607, 2020 08.
Article in English | MEDLINE | ID: mdl-32343398

ABSTRACT

BACKGROUND AND PURPOSE: Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism. EXPERIMENTAL APPROACH: Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study. KEY RESULTS: C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. CONCLUSION AND IMPLICATIONS: These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.


Subject(s)
Mitophagy , Non-alcoholic Fatty Liver Disease , Animals , Anthocyanins , Glucosides/pharmacology , Humans , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Protein Kinases
11.
J Dairy Sci ; 103(4): 3628-3635, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32037170

ABSTRACT

During the transition period, dairy cows are challenged by increased energy demands and decreased dry matter intake, which can induce a variety of metabolic disorders, especially fatty liver. Dairy cows suffering from mild or moderate fatty liver in this period show no distinct clinical symptoms, indicating the occurrence of adaptive processes. The process of autophagy (an adaptive response) leads to degradation of intracellular components to generate energy and maintains cellular homeostasis during negative nutrient status. Whether autophagy is involved in metabolic adaptations of the pathological course of mild fatty liver is unclear. Thus, the aim of this study was to determine hepatic autophagy status in dairy cows with mild fatty liver. Liver samples were collected from healthy cows (n = 15), defined as having hepatic triglyceride (TG) content <1% on a wet weight basis, and cows with mild fatty liver (n = 15), defined as having hepatic TG content between 1 and 5%. The abundance of the ubiquitinated proteins, microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3-II) and sequestosome-1 (SQSTM1, also called p62) was lower, whereas the mRNA abundance of MAP1LC3 and SQSTM1 was greater in cows with mild fatty liver. The hepatic mRNA abundance of autophagy-related (ATG) genes ATG5 and ATG7 was greater in response to fatty liver. However, the protein abundance of ATG5 and ATG7 did not differ between healthy and mild fatty liver cows. Together, these data indicate that the formation and degradation of autophagosomes is enhanced in the liver of cows with mild fatty liver. Besides, these results are conducive to define the adaptation mechanisms of dairy cows during the transition period.


Subject(s)
Autophagy , Cattle Diseases/pathology , Fatty Liver/veterinary , Liver/pathology , Animals , Autophagosomes , Autophagy/genetics , Cattle , Fatty Liver/pathology , Female , Lactation , Liver/metabolism , Triglycerides/metabolism
12.
J Dairy Res ; 87(1): 52-55, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32000864

ABSTRACT

The experiments reported in this research communication aimed to compare the serum nonesterified fatty acid (NEFA) composition in ketotic cows and healthy cows during the perinatal period. NEFAs play significant roles in etiology and pathology of ketosis. We hypothesized that ketotic cows will display a different serum NEFA composition compared to healthy controls, and fatty acid related indicators for ketosis prediction can be screened. Pre-partum healthy cows were recruited, and blood samples were collected on -7, 3, 7, 14 and 21 d postpartum. Cows were further divided into a healthy control group (C group, n = 6) and a ketosis group (K group, n = 6) if blood ß-hydroxybutyric acid levels exceeded 1.2 mm during the experiment. NEFA composition was then analyzed by means of Gas Chromatography-Mass Spectrometer (GC-MS). Only C12 : 0% was significantly higher in C group than K group on 7 d pre-partum (P < 0.05), when the cows were not diagnosed with ketosis. Five fatty acids displayed statistical differences in composition between C and K group (P < 0.05), namely C12 : 0, C16 : 0, C17 : 0, C18 : 1n9 and C22 : 1n9. Saturates%, unsaturates%, mono-unsaturates% and saturates/unsaturates were also different between C and K group (P < 0.05). Of note, C18 : 1n9/C12 : 0 and C18 : 1n9/C22 : 1n9 in K group were significantly higher than those in controls on 7 d pre-partum (P < 0.05). It is suggested that the ratios show potential as indicators for prediction of ketosis.


Subject(s)
Cattle Diseases/blood , Fatty Acids, Nonesterified/blood , Ketosis/veterinary , Animals , Case-Control Studies , Cattle/blood , Cattle/metabolism , Cattle Diseases/metabolism , Female , Gas Chromatography-Mass Spectrometry/veterinary , Ketosis/blood , Ketosis/metabolism
13.
J Dairy Sci ; 102(11): 10554-10563, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31495623

ABSTRACT

Ketosis is an important metabolic disease that can negatively affect the production efficiency of dairy cows. Earlier studies have revealed metabolic and inflammatory alterations in the blood associated with ketosis; however, a link between ketosis and hepatic inflammation has not been well documented. The objective of this study was to investigate whether the nuclear factor kappa B (NF-κB) signaling pathway and NLR family pyrin domain containing 3 (NLRP3) inflammasome were activated in the liver of ketotic cows. Liver and blood samples were collected from healthy (n = 15, control group) and ketotic (n = 15, ketosis group) cows that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Results showed that serum levels of fatty acids, ß-hydroxybutyrate (BHB), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were higher and glucose was lower in ketotic cows. Concentrations of serum proinflammatory cytokines IL18, tumor necrosis factor (TNF)-α, and IL1B were greater and the anti-inflammatory cytokine IL10 was lower in the ketosis group. Cows with ketosis had triacylglycerol accumulation in the liver. Upregulation of phosphorylated (p)-NF-κB and p-inhibitor of κB (IκB)α protein abundance in cows with ketosis indicated that the hepatic NF-κB signaling pathway was overactivated. The mRNA abundance of TNFA, inducible nitric oxide synthase (NOS2), IL18, and IL1B were greater and IL10 was lower in ketotic cows. More importantly, the mRNA and protein abundance of NLRP3 and caspase-1 (CASP1) along with CASP1 activity were greater in the liver of cows with ketosis. Overall, the data indicate that the onset of ketosis is accompanied by activation of the NF-κB signaling pathway and NLRP3 inflammasome, resulting in a state of inflammation.


Subject(s)
Cattle Diseases/metabolism , Inflammasomes/metabolism , Ketosis/veterinary , Liver/metabolism , NF-kappa B/metabolism , Pyrin Domain/physiology , 3-Hydroxybutyric Acid/blood , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Cattle , Cattle Diseases/blood , Cytokines/blood , Fatty Acids/blood , Female , Inflammation , Interleukin-10/blood , Interleukin-1beta/blood , Ketosis/metabolism , Lactation , Milk/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/blood , Up-Regulation
14.
J Dairy Sci ; 101(12): 11175-11185, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316604

ABSTRACT

The ability of liver to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis. Autophagy encompasses mechanisms of cell survival, including capturing, degrading, and recycling of intracellular proteins and organelles in lysosomes. During negative nutrient status, autophagy provides substrates to sustain cellular metabolism and hence, tissue function. Severe negative energy balance in dairy cows is associated with fatty liver. The aim of this study was to investigate the hepatic autophagy status in dairy cows with severe fatty liver and to determine associations with biomarkers of liver function and inflammation. Liver and blood samples were collected from multiparous cows diagnosed as clinically healthy (n = 15) or with severe fatty liver (n = 15) at 3 to 9 d in milk. Liver tissue was biopsied by needle puncture, and serum samples were collected on 3 consecutive days via jugular venipuncture. Concentrations of free fatty acids and ß-hydroxybutyrate were greater in cows with severe fatty liver. Milk production, dry matter intake, and concentration of glucose were all lower in cows with severe fatty liver. Activities of serum aspartate aminotransferase, alanine aminotransferase, glutamate dehydrogenase, and γ-glutamyl transferase were all greater in cows with severe fatty liver. Serum concentrations of haptoglobin and serum amyloid A were also markedly greater in cows with severe fatty liver. The mRNA expression of autophagosome formation-related gene ULK1 was lower in the liver of dairy cows with severe fatty liver. However, the expression of other autophagosome formation-related genes, beclin 1 (BECN1), phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), autophagy-related gene (ATG) 3, ATG5, and ATG12, did not differ. More important, ubiquitinated proteins, protein expression of sequestosome-1 (SQSTM1, also called p62), and microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3)-II was greater in cows with severe fatty liver. Transmission electron microscopy revealed an increased number of autophagosomes in the liver of dairy cows with severe fatty liver. Taken together, these results indicate that excessive lipid infiltration of the liver impairs autophagic activity that may lead to cellular damage and inflammation.


Subject(s)
Autophagy/genetics , Energy Metabolism , Fatty Liver/veterinary , Inflammation/veterinary , Milk/metabolism , 3-Hydroxybutyric Acid/blood , Animals , Autophagosomes , Biomarkers/analysis , Blood Glucose/analysis , Cattle , Fatty Acids, Nonesterified/blood , Fatty Liver/physiopathology , Female , Inflammation/physiopathology , Lactation , Lipid Metabolism , Liver/physiopathology , Liver Function Tests/veterinary , Milk/chemistry
15.
J Dairy Sci ; 101(10): 9544-9558, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30100495

ABSTRACT

The inevitable deficiency in nutrients and energy at the onset of lactation requires an optimal adaptation of the hepatic metabolism to overcome metabolic stress. Fatty liver is one of the main health disorders after parturition. Therefore, to investigate changes in hepatic lipid metabolic status and mitochondria in dairy cows with mild fatty liver, liver and blood samples were collected from healthy cows (n = 15) and cows with mild fatty liver (n = 15). To determine the effects of palmitic acids (PA), one of the major component of fatty acids, on lipid metabolism and mitochondria in vitro, calf hepatocytes were isolated from healthy calves and treated with various concentrations of PA (0, 50, 100, and 200 µM). Dairy cows with mild fatty liver displayed hepatic lipid accumulation. The protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor-α (PPARα) and mRNA levels of acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), acyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) were significantly higher in dairy cows with mild fatty liver than in control cows. The hepatic mitochondrial DNA content, mRNA levels of oxidative phosphorylation complexes I to V (CO 1-V), protein levels of cytochrome c oxidase subunit IV (COX IV), voltage dependent anion channel 1 (VDAC1), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), and adenosine triphosphate (ATP) content were all markedly increased in the liver of dairy cows with mild fatty liver compared with healthy cows. The PA treatment significantly increased lipid accumulation; protein levels of SREBP-1c and PPARα; and mRNA levels of ACC1, FAS, ACO, and CPT1A in calf hepatocytes. Moreover, the mitochondrial DNA content, mRNA levels of CO 1-V, protein levels of COX IV, VDAC1, PGC-1α, NRF1, mitochondrial transcription factor A, and ATP content were significantly increased in PA-treated hepatocytes compared with control hepatocytes. The protein level of mitofusin-2 was significantly decreased in PA-treated groups. In conclusion, lipid synthesis and oxidation, number of mitochondria, and ATP production were increased in the liver of dairy cows with mild fatty liver and PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver.


Subject(s)
Cattle Diseases/metabolism , Fatty Liver/veterinary , Lipid Metabolism/physiology , Mitochondria/metabolism , Animals , Cattle , Fatty Liver/metabolism , Female , Liver/metabolism , Sterol Regulatory Element Binding Protein 1
16.
J Dairy Sci ; 101(4): 3476-3487, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29398030

ABSTRACT

The hepatic growth hormone (GH)-insulin-like growth factor (IGF)-I axis is essential for regulating intrahepatic lipid metabolism. Ketotic cows are characterized by high blood concentrations of fatty acids and ß-hydroxybutyrate (BHB), which display lipotoxicity. The aim of this study was to investigate changes in the hepatic GH-IGF-I axis in ketotic cows and to determine the effects of fatty acids and BHB on the GH-IGF-I axis in calf hepatocytes. Liver and blood samples were collected from healthy (n = 15) and clinically ketotic (n = 15) cows. Hepatocytes were isolated from calves and treated with various concentrations of GH, fatty acids, and BHB. The results showed that clinically ketotic cows displayed a high blood concentration of GH, a low blood concentration of IGF-I, and decreased hepatic GHR1A expression as well as impaired hepatic Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) signaling. In vitro, GH treatment induced activation of the JAK2-STAT5 pathway to increase the mRNA expression and secretion of IGF-I in calf hepatocytes. More importantly, treatment with fatty acids or BHB significantly inhibited GHR1A mRNA and JAK2 protein expression, as well as the STAT5 phosphorylation level and phospho-STAT5 nuclear translocation; these effects markedly reduced IGF1 mRNA expression and secretion in calf hepatocytes. In summary, these results indicate that high blood concentrations of fatty acids or BHB can impair the intrahepatic GH-mediated JAK2-STAT5 pathway and downregulate IGF-I expression and secretion in ketotic cows.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Cattle Diseases/metabolism , Fatty Acids/metabolism , Janus Kinase 2/metabolism , Ketosis/veterinary , STAT5 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , Cattle , Cattle Diseases/physiopathology , Female , Growth Hormone/metabolism , Ketosis/metabolism , Ketosis/physiopathology , Liver/metabolism
17.
Vet Res Commun ; 40(1): 49-54, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26728033

ABSTRACT

The objective of this study was to investigate the measurement of serum fibroblast growth factor-21 (FGF-21), a protein mainly synthesized by the liver, as a sensitive biomarker for diagnosis of ketosis in dairy cows. Ninety Holstein-Friesian dairy cows (60 healthy and 30 ketosis cases) were selected and divided into a Ketosis group (K), and a Control group (C). We measured serum FGF-21 and other biochemical parameters by commercial ELISA kits. In a combined population of all 90 cows, we found that serum FGF-21 level was lower (P < 0.001) in cows suffering from ketosis. When the ß-hydroxybutyric acid (BHBA) level increased over 1.2 mmol/L, the FGF-21 level tended to decline below 300.85 pg/ml. The area under the receiver operating characteristic curve (AUC-ROC) for serum FGF-21 for diagnosis of fatty liver was 0.952-0.025 [95% confidence interval (CI) 0.904, 1.000] which was higher than the AUC-ROC for glucose (Glc) and other tested parameters. We concluded that FGF-21 could be a diagnostic parameter in the evaluation and auxiliary diagnosis of changes in the energy metabolism state, and serum FGF-21 measurement would have a considerable clinical impact and lead to greater profitability in the dairy industry.


Subject(s)
Cattle Diseases/blood , Fibroblast Growth Factors/blood , Ketosis/veterinary , Animals , Area Under Curve , Biomarkers/blood , Cattle , Female , Ketosis/blood , ROC Curve
18.
BMC Vet Res ; 11: 271, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26497746

ABSTRACT

BACKGROUND: Negative energy balance (NEB) is a common pathological foundation of ketosis and fatty liver. Liver and fat tissue are the major organs of lipid metabolism and take part in modulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB develop during perinatal period. Fibroblast growth factor-21 (FGF-21) is a recently discovered protein hormone that plays an important and specific regulating role in adipose lipid metabolism and liver gluconeogenesis for human and mouse. Our aim is to investigate the variation and relationship between serum FGF-21 concentration and characteristic parameters related to negative energy balance in different energy metabolism state. METHODS: In this research, five non-pregnant, non-lactating Holstein-Friesian dairy cows were randomly allocated into two groups. The interventions were a controlled-energy diet (30% of maintenance energy requirements) and a moderate-energy diet (120% of predicted energy requirements) that lasted for the duration of the experiment. We measured biochemical parameters, serum FGF-21, leptin and insulin levels by commercial ELISA kits. RESULTS: The results showed that serum FGF-21 levels were significantly higher in both groups treated with a controlled-energy diet, while FGF-21 levels in both groups treated with moderate-energy diet were low. FGF-21 levels exhibited a significant positive correlation with serum leptin levels, while an inverse relationship was found between FGF-21 and blood glucose and ß-hydroxybutyrate acid (BHBA) levels. CONCLUSION: An increase in FGF-21 levels after a controlled-energy diet treatment may contribute to a positive metabolic effect which could result in a new theoretical and practical basis for the preventive strategy of dairy cows with NEB.


Subject(s)
Cattle/blood , Energy Intake/physiology , Energy Metabolism/physiology , Fibroblast Growth Factors/metabolism , Gene Expression Regulation/physiology , 3-Hydroxybutyric Acid/blood , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose , Diet/veterinary , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...