Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 252: 114590, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36738614

ABSTRACT

To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1ß, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1ß and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Animals , Mice , Acetaminophen/toxicity , Acetaminophen/metabolism , Antioxidants/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism , Inflammasomes/metabolism , Liver , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Mitogen-Activated Protein Kinases/metabolism
2.
Ecotoxicol Environ Saf ; 244: 114073, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36115150

ABSTRACT

This study aimed to investigate the protective effect and potential mechanism of Yinhuang oral liquid (YOL) against acetaminophen (APAP) induced liver injury in mice. C57BL/6 mice were randomly divided into control group, model group (300 mg/kg APAP), NAC group and YOL group. Mice were treated intragastrical with YOL (8 g/kg) and N-Acetylcysteine (NAC, 300 mg/kg) 6 h before and 6 h after the APAP (300 mg/kg) intraperitoneal injection. 12 h after APAP exposure, blood and liver samples were collected for subsequent testing. The results showed that APAP decreased liver index, induced liver pathological injury with hepatocytes swelling, necrosis and apoptosis and inflammatory cell infiltration. APAP exposure significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels to 35 and 6 multiples than their original levels. YOL alleviated liver pathological damage, decreased the serum levels of ALT and AST in APAP exposure mice, and it worked better than NAC. Moreover, APAP promoted oxidative stress by increasing lipid peroxidation (MDA) and decreasing anti-oxidant enzyme activities of SOD and GSH, inhibited the mRNA levels of Nrf2, HO-1, Gclc and Gclm, and decreased the protein levels of Nrf2, HO-1 and Keap1, compared to control group. Furthermore, APAP exposure significantly down-regulated the mRNA and protein levels of autophagy related genes (Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7). However, the gene levels of mTOR and p-mTOR increased, and p-ULK1 protein level decreased in liver of APAP treated mice. Additionally, YOL alleviated the oxidative injury by up-regulating Nrf2 pathway. The gene and protein levels of autophagy-related genes Beclin-1, LC3-II, LC3-I, Atg4B, Atg5, Atg16L1 and Atg7 reached the basal levels after YOL treatment. In conclusion, YOL had a protective and therapeutic role in APAP-induced liver injury in mice by activating Nrf2 signaling pathway and autophagy.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Acetaminophen/metabolism , Acetaminophen/toxicity , Acetylcysteine/pharmacology , Alanine Transaminase/metabolism , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/metabolism , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
3.
BMC Vet Res ; 18(1): 289, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35871002

ABSTRACT

BACKGROUND: This study investigated the effects of chronic heat stress on liver inflammatory injury and its potential mechanisms in broilers. Chickens were randomly assigned to the 1-week control group (Control 1), 1-week heat stress group (HS1), 2-week control group (Control 2), and a 2-week heat stress group (HS2) with 15 replicates per group. Broilers in the heat stress groups were exposed to heat stress (35 ± 2 °C) for 8 h/d for 7 or 14 consecutive days, and the rest of 26 hours/day were kept at 23 ± 2 °C like control group broilers. Growth performance and liver inflammatory injury were examined for the analysis of liver injury. RESULTS: The results showed that heat stress for 2 weeks decreased the growth performance, reduced the liver weight (P < 0.05) and liver index (P < 0.05), induced obvious bleeding and necrosis points. Liver histological changes found that the heat stress induced the liver infiltration of neutrophils and lymphocytes in broilers. Serum levels of AST and SOD were enhanced in HS1 (P < 0.01, P < 0.05) and HS2 (P < 0.01, P < 0.05) group, compared with control 1 and 2 group broilers. The MDA content in HS1 group was higher than that of in control 1 group broilers (P < 0.05). Both the gene and protein expression levels of HSP70, TLR4 and NF-κB in the liver were significantly enhanced by heat stress. Furthermore, heat stress obviously enhanced the expression of IL-6, TNF-α, NF-κB P65, IκB and their phosphorylated proteins in the livers of broilers. In addition, heat stress promoted the activation of NLRP3 with increased NLRP3, caspase-1 and IL-1ß levels. CONCLUSIONS: These results suggested that heat stress can cause liver inflammation via activation of the TLR4-NF-κB and NLRP3 signaling pathways in broilers. With the extension of heat stress time, the effect of heat stress on the increase of NF-κB and NLRP3 signaling pathways tended to slow down.


Subject(s)
NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Chickens/metabolism , Heat-Shock Response , Inflammation/veterinary , Liver/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
4.
Poult Sci ; 100(9): 101302, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34289428

ABSTRACT

Heat stress can affect the poultry production and immune status of broilers. Heat stress disrupts intestinal integrity and increases intestinal inflammation, which is related with body immune dysfunction. Chai Hu oral liquid used as an antipyretic and anti-inflammatory drug is widely used in exogenous fever of poultry, but its resistance to heat stress and the mechanism is still unclear. In this study, a chronic heat stressed broilers model was established to explore the mechanisms of broilers' immune function changes and the effects of Chai Hu oral liquid. In this study, a total of 480 broilers were randomly divided into 6 groups with 80 replicates. Heat stress (HS) group broilers were stressed at 35 ± 2°C for 5 or 10 consecutive d with 6 h/d. Heat stressed (for 5 or 10 d) broilers were given with Jieshu KangreSan (Positive), Chai Hu oral liquid high, middle and low dosage (CH-High, CH-Mid, CH-Low) by oral administration. Birds in control group were treated with the same volume of PBS only in 25 ± 2°C. All birds were sacrificed at last heat stress challenged day. Changes in immune function were assessed by immune organs index, serum IFN-γ level, gene and protein expressions of immune factors in spleen and bursa of Fabricius. Results from this experiment showed that heat stress enhanced the immune organs' edema by directly increased the organs indexes of spleen and bursa of Fabricius in broilers. Heat stress for 10 d also increased bursa of Fabricius HSP70 protein level and significantly lowered the spleen and bursa of Fabricius proteins expressions of IFN-α, IFN-ß, and IFN-γ in broilers. The IFN-ß and IFN-γ protein levels in spleen and bursa of Fabricius also decreased in heat stressed broilers for 5 d. The gene and protein expressions of TLR4 and TBK1 markedly decreased in spleen and bursa of Fabricius of broilers treated with chronic heat stress. Chai Hu oral liquid reduced edema of immune organs and elevated TLR4-TBK1 signaling pathway to release immune factors. Above results indicated that chronic heat stress induced impaired immune function by inhibiting TLR4-TBK1 signaling pathway, and Chai Hu oral liquid had effective protection of body's immune ability by enhancing this signaling pathway.


Subject(s)
Bupleurum , Bursa of Fabricius , Animals , Chickens , Dietary Supplements , Heat-Shock Response , Immunity , Signal Transduction , Spleen , Toll-Like Receptor 4
SELECTION OF CITATIONS
SEARCH DETAIL
...